This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The map from x to n x for a fixed integer n is a group homomorphism if the group is commutative. (Contributed by Mario Carneiro, 4-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgmhm.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgmhm.m | ⊢ · = ( .g ‘ 𝐺 ) | ||
| Assertion | mulgghm | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ∈ ( 𝐺 GrpHom 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgmhm.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgmhm.m | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 4 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ ) → 𝐺 ∈ Grp ) |
| 6 | 1 2 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) → ( 𝑀 · 𝑥 ) ∈ 𝐵 ) |
| 7 | 4 6 | syl3an1 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) → ( 𝑀 · 𝑥 ) ∈ 𝐵 ) |
| 8 | 7 | 3expa | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑀 · 𝑥 ) ∈ 𝐵 ) |
| 9 | 8 | fmpttd | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) : 𝐵 ⟶ 𝐵 ) |
| 10 | 3anass | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ↔ ( 𝑀 ∈ ℤ ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ) | |
| 11 | 1 2 3 | mulgdi | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑀 · ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( 𝑀 · 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑀 · 𝑧 ) ) ) |
| 12 | 10 11 | sylan2br | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ) → ( 𝑀 · ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( 𝑀 · 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑀 · 𝑧 ) ) ) |
| 13 | 12 | anassrs | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑀 · ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( 𝑀 · 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑀 · 𝑧 ) ) ) |
| 14 | 1 3 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝐵 ) |
| 15 | 14 | 3expb | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝐵 ) |
| 16 | 5 15 | sylan | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝐵 ) |
| 17 | oveq2 | ⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → ( 𝑀 · 𝑥 ) = ( 𝑀 · ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) | |
| 18 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) | |
| 19 | ovex | ⊢ ( 𝑀 · ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ V | |
| 20 | 17 18 19 | fvmpt | ⊢ ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( 𝑀 · ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 21 | 16 20 | syl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( 𝑀 · ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 22 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑀 · 𝑥 ) = ( 𝑀 · 𝑦 ) ) | |
| 23 | ovex | ⊢ ( 𝑀 · 𝑦 ) ∈ V | |
| 24 | 22 18 23 | fvmpt | ⊢ ( 𝑦 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ 𝑦 ) = ( 𝑀 · 𝑦 ) ) |
| 25 | oveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑀 · 𝑥 ) = ( 𝑀 · 𝑧 ) ) | |
| 26 | ovex | ⊢ ( 𝑀 · 𝑧 ) ∈ V | |
| 27 | 25 18 26 | fvmpt | ⊢ ( 𝑧 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ 𝑧 ) = ( 𝑀 · 𝑧 ) ) |
| 28 | 24 27 | oveqan12d | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ 𝑧 ) ) = ( ( 𝑀 · 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑀 · 𝑧 ) ) ) |
| 29 | 28 | adantl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ 𝑧 ) ) = ( ( 𝑀 · 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑀 · 𝑧 ) ) ) |
| 30 | 13 21 29 | 3eqtr4d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ 𝑧 ) ) ) |
| 31 | 1 1 3 3 5 5 9 30 | isghmd | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ∈ ( 𝐺 GrpHom 𝐺 ) ) |