This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation at a successor, extended to ZZ . (Contributed by Mario Carneiro, 11-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnndir.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgnndir.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulgnndir.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | mulgp1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 + 1 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) + 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnndir.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgnndir.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mulgnndir.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | 1z | ⊢ 1 ∈ ℤ | |
| 5 | 1 2 3 | mulgdir | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑁 + 1 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) + ( 1 · 𝑋 ) ) ) |
| 6 | 4 5 | mp3anr2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑁 + 1 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) + ( 1 · 𝑋 ) ) ) |
| 7 | 6 | 3impb | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 + 1 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) + ( 1 · 𝑋 ) ) ) |
| 8 | 1 2 | mulg1 | ⊢ ( 𝑋 ∈ 𝐵 → ( 1 · 𝑋 ) = 𝑋 ) |
| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 1 · 𝑋 ) = 𝑋 ) |
| 10 | 9 | oveq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 · 𝑋 ) + ( 1 · 𝑋 ) ) = ( ( 𝑁 · 𝑋 ) + 𝑋 ) ) |
| 11 | 7 10 | eqtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 + 1 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) + 𝑋 ) ) |