This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties which determine the least upper bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | poslubdg.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| poslubdg.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | ||
| poslubdg.u | ⊢ ( 𝜑 → 𝑈 = ( lub ‘ 𝐾 ) ) | ||
| poslubdg.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | ||
| poslubdg.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) | ||
| poslubdg.t | ⊢ ( 𝜑 → 𝑇 ∈ 𝐵 ) | ||
| poslubdg.ub | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ≤ 𝑇 ) | ||
| poslubdg.le | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 ) → 𝑇 ≤ 𝑦 ) | ||
| Assertion | poslubdg | ⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) = 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poslubdg.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | poslubdg.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 3 | poslubdg.u | ⊢ ( 𝜑 → 𝑈 = ( lub ‘ 𝐾 ) ) | |
| 4 | poslubdg.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | |
| 5 | poslubdg.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) | |
| 6 | poslubdg.t | ⊢ ( 𝜑 → 𝑇 ∈ 𝐵 ) | |
| 7 | poslubdg.ub | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ≤ 𝑇 ) | |
| 8 | poslubdg.le | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 ) → 𝑇 ≤ 𝑦 ) | |
| 9 | 3 | fveq1d | ⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) = ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) |
| 10 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 11 | eqid | ⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) | |
| 12 | 5 2 | sseqtrd | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝐾 ) ) |
| 13 | 6 2 | eleqtrd | ⊢ ( 𝜑 → 𝑇 ∈ ( Base ‘ 𝐾 ) ) |
| 14 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) |
| 15 | 14 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → 𝑦 ∈ 𝐵 ) |
| 16 | 15 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 ) → 𝑦 ∈ 𝐵 ) |
| 17 | 16 8 | syld3an2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 ) → 𝑇 ≤ 𝑦 ) |
| 18 | 1 10 11 4 12 13 7 17 | poslubd | ⊢ ( 𝜑 → ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) = 𝑇 ) |
| 19 | 9 18 | eqtrd | ⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) = 𝑇 ) |