This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak order condition of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipoval.i | ⊢ 𝐼 = ( toInc ‘ 𝐹 ) | |
| ipole.l | ⊢ ≤ = ( le ‘ 𝐼 ) | ||
| Assertion | ipole | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 ≤ 𝑌 ↔ 𝑋 ⊆ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipoval.i | ⊢ 𝐼 = ( toInc ‘ 𝐹 ) | |
| 2 | ipole.l | ⊢ ≤ = ( le ‘ 𝐼 ) | |
| 3 | preq12 | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → { 𝑥 , 𝑦 } = { 𝑋 , 𝑌 } ) | |
| 4 | 3 | sseq1d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( { 𝑥 , 𝑦 } ⊆ 𝐹 ↔ { 𝑋 , 𝑌 } ⊆ 𝐹 ) ) |
| 5 | sseq12 | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑥 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝑌 ) ) | |
| 6 | 4 5 | anbi12d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) ↔ ( { 𝑋 , 𝑌 } ⊆ 𝐹 ∧ 𝑋 ⊆ 𝑌 ) ) ) |
| 7 | eqid | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } | |
| 8 | 6 7 | brabga | ⊢ ( ( 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } 𝑌 ↔ ( { 𝑋 , 𝑌 } ⊆ 𝐹 ∧ 𝑋 ⊆ 𝑌 ) ) ) |
| 9 | 8 | 3adant1 | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } 𝑌 ↔ ( { 𝑋 , 𝑌 } ⊆ 𝐹 ∧ 𝑋 ⊆ 𝑌 ) ) ) |
| 10 | 1 | ipolerval | ⊢ ( 𝐹 ∈ 𝑉 → { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } = ( le ‘ 𝐼 ) ) |
| 11 | 2 10 | eqtr4id | ⊢ ( 𝐹 ∈ 𝑉 → ≤ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ) |
| 12 | 11 | breqd | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝑋 ≤ 𝑌 ↔ 𝑋 { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } 𝑌 ) ) |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 ≤ 𝑌 ↔ 𝑋 { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } 𝑌 ) ) |
| 14 | prssi | ⊢ ( ( 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → { 𝑋 , 𝑌 } ⊆ 𝐹 ) | |
| 15 | 14 | 3adant1 | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → { 𝑋 , 𝑌 } ⊆ 𝐹 ) |
| 16 | 15 | biantrurd | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 ⊆ 𝑌 ↔ ( { 𝑋 , 𝑌 } ⊆ 𝐹 ∧ 𝑋 ⊆ 𝑌 ) ) ) |
| 17 | 9 13 16 | 3bitr4d | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 ≤ 𝑌 ↔ 𝑋 ⊆ 𝑌 ) ) |