This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Least upper bounds in a Moore space are realized by the closure of the union. (Contributed by Stefan O'Rear, 31-Jan-2015) (Proof shortened by Zhi Wang, 29-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mreclatGOOD.i | ⊢ 𝐼 = ( toInc ‘ 𝐶 ) | |
| mrelatlubALT.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | ||
| mrelatlubALT.l | ⊢ 𝐿 = ( lub ‘ 𝐼 ) | ||
| Assertion | mrelatlubALT | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → ( 𝐿 ‘ 𝑈 ) = ( 𝐹 ‘ ∪ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreclatGOOD.i | ⊢ 𝐼 = ( toInc ‘ 𝐶 ) | |
| 2 | mrelatlubALT.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| 3 | mrelatlubALT.l | ⊢ 𝐿 = ( lub ‘ 𝐼 ) | |
| 4 | simpl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) | |
| 5 | simpr | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → 𝑈 ⊆ 𝐶 ) | |
| 6 | 3 | a1i | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → 𝐿 = ( lub ‘ 𝐼 ) ) |
| 7 | mreuniss | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → ∪ 𝑈 ⊆ 𝑋 ) | |
| 8 | 2 | mrcval | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∪ 𝑈 ⊆ 𝑋 ) → ( 𝐹 ‘ ∪ 𝑈 ) = ∩ { 𝑥 ∈ 𝐶 ∣ ∪ 𝑈 ⊆ 𝑥 } ) |
| 9 | 7 8 | syldan | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → ( 𝐹 ‘ ∪ 𝑈 ) = ∩ { 𝑥 ∈ 𝐶 ∣ ∪ 𝑈 ⊆ 𝑥 } ) |
| 10 | 2 | mrccl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∪ 𝑈 ⊆ 𝑋 ) → ( 𝐹 ‘ ∪ 𝑈 ) ∈ 𝐶 ) |
| 11 | 7 10 | syldan | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → ( 𝐹 ‘ ∪ 𝑈 ) ∈ 𝐶 ) |
| 12 | 1 4 5 6 9 11 | ipolub | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → ( 𝐿 ‘ 𝑈 ) = ( 𝐹 ‘ ∪ 𝑈 ) ) |