This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties which determine the greatest lower bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | posglbdg.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| posglbdg.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | ||
| posglbdg.g | ⊢ ( 𝜑 → 𝐺 = ( glb ‘ 𝐾 ) ) | ||
| posglbdg.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | ||
| posglbdg.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) | ||
| posglbdg.t | ⊢ ( 𝜑 → 𝑇 ∈ 𝐵 ) | ||
| posglbdg.lb | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑇 ≤ 𝑥 ) | ||
| posglbdg.gt | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑦 ≤ 𝑥 ) → 𝑦 ≤ 𝑇 ) | ||
| Assertion | posglbdg | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑆 ) = 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | posglbdg.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | posglbdg.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 3 | posglbdg.g | ⊢ ( 𝜑 → 𝐺 = ( glb ‘ 𝐾 ) ) | |
| 4 | posglbdg.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | |
| 5 | posglbdg.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) | |
| 6 | posglbdg.t | ⊢ ( 𝜑 → 𝑇 ∈ 𝐵 ) | |
| 7 | posglbdg.lb | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑇 ≤ 𝑥 ) | |
| 8 | posglbdg.gt | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑦 ≤ 𝑥 ) → 𝑦 ≤ 𝑇 ) | |
| 9 | eqid | ⊢ ( ODual ‘ 𝐾 ) = ( ODual ‘ 𝐾 ) | |
| 10 | 9 1 | oduleval | ⊢ ◡ ≤ = ( le ‘ ( ODual ‘ 𝐾 ) ) |
| 11 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 12 | 9 11 | odubas | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( ODual ‘ 𝐾 ) ) |
| 13 | 2 12 | eqtrdi | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( ODual ‘ 𝐾 ) ) ) |
| 14 | eqid | ⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) | |
| 15 | 9 14 | odulub | ⊢ ( 𝐾 ∈ Poset → ( glb ‘ 𝐾 ) = ( lub ‘ ( ODual ‘ 𝐾 ) ) ) |
| 16 | 4 15 | syl | ⊢ ( 𝜑 → ( glb ‘ 𝐾 ) = ( lub ‘ ( ODual ‘ 𝐾 ) ) ) |
| 17 | 3 16 | eqtrd | ⊢ ( 𝜑 → 𝐺 = ( lub ‘ ( ODual ‘ 𝐾 ) ) ) |
| 18 | 9 | odupos | ⊢ ( 𝐾 ∈ Poset → ( ODual ‘ 𝐾 ) ∈ Poset ) |
| 19 | 4 18 | syl | ⊢ ( 𝜑 → ( ODual ‘ 𝐾 ) ∈ Poset ) |
| 20 | vex | ⊢ 𝑥 ∈ V | |
| 21 | brcnvg | ⊢ ( ( 𝑥 ∈ V ∧ 𝑇 ∈ 𝐵 ) → ( 𝑥 ◡ ≤ 𝑇 ↔ 𝑇 ≤ 𝑥 ) ) | |
| 22 | 20 6 21 | sylancr | ⊢ ( 𝜑 → ( 𝑥 ◡ ≤ 𝑇 ↔ 𝑇 ≤ 𝑥 ) ) |
| 23 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ◡ ≤ 𝑇 ↔ 𝑇 ≤ 𝑥 ) ) |
| 24 | 7 23 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ◡ ≤ 𝑇 ) |
| 25 | vex | ⊢ 𝑦 ∈ V | |
| 26 | 20 25 | brcnv | ⊢ ( 𝑥 ◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑥 ) |
| 27 | 26 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝑆 𝑥 ◡ ≤ 𝑦 ↔ ∀ 𝑥 ∈ 𝑆 𝑦 ≤ 𝑥 ) |
| 28 | 27 8 | syl3an3b | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑥 ◡ ≤ 𝑦 ) → 𝑦 ≤ 𝑇 ) |
| 29 | brcnvg | ⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑦 ∈ V ) → ( 𝑇 ◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑇 ) ) | |
| 30 | 6 25 29 | sylancl | ⊢ ( 𝜑 → ( 𝑇 ◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑇 ) ) |
| 31 | 30 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑥 ◡ ≤ 𝑦 ) → ( 𝑇 ◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑇 ) ) |
| 32 | 28 31 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑥 ◡ ≤ 𝑦 ) → 𝑇 ◡ ≤ 𝑦 ) |
| 33 | 10 13 17 19 5 6 24 32 | poslubdg | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑆 ) = 𝑇 ) |