This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Greatest lower bounds in a Moore space are realized by intersections. (Contributed by Stefan O'Rear, 31-Jan-2015) See mrelatglbALT for an alternate proof.
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mreclat.i | |- I = ( toInc ` C ) |
|
| mrelatglb.g | |- G = ( glb ` I ) |
||
| Assertion | mrelatglb | |- ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) -> ( G ` U ) = |^| U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreclat.i | |- I = ( toInc ` C ) |
|
| 2 | mrelatglb.g | |- G = ( glb ` I ) |
|
| 3 | eqid | |- ( le ` I ) = ( le ` I ) |
|
| 4 | 1 | ipobas | |- ( C e. ( Moore ` X ) -> C = ( Base ` I ) ) |
| 5 | 4 | 3ad2ant1 | |- ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) -> C = ( Base ` I ) ) |
| 6 | 2 | a1i | |- ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) -> G = ( glb ` I ) ) |
| 7 | 1 | ipopos | |- I e. Poset |
| 8 | 7 | a1i | |- ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) -> I e. Poset ) |
| 9 | simp2 | |- ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) -> U C_ C ) |
|
| 10 | mreintcl | |- ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) -> |^| U e. C ) |
|
| 11 | intss1 | |- ( x e. U -> |^| U C_ x ) |
|
| 12 | 11 | adantl | |- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ x e. U ) -> |^| U C_ x ) |
| 13 | simpl1 | |- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ x e. U ) -> C e. ( Moore ` X ) ) |
|
| 14 | 10 | adantr | |- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ x e. U ) -> |^| U e. C ) |
| 15 | 9 | sselda | |- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ x e. U ) -> x e. C ) |
| 16 | 1 3 | ipole | |- ( ( C e. ( Moore ` X ) /\ |^| U e. C /\ x e. C ) -> ( |^| U ( le ` I ) x <-> |^| U C_ x ) ) |
| 17 | 13 14 15 16 | syl3anc | |- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ x e. U ) -> ( |^| U ( le ` I ) x <-> |^| U C_ x ) ) |
| 18 | 12 17 | mpbird | |- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ x e. U ) -> |^| U ( le ` I ) x ) |
| 19 | simpll1 | |- ( ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C ) /\ x e. U ) -> C e. ( Moore ` X ) ) |
|
| 20 | simplr | |- ( ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C ) /\ x e. U ) -> y e. C ) |
|
| 21 | simpl2 | |- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C ) -> U C_ C ) |
|
| 22 | 21 | sselda | |- ( ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C ) /\ x e. U ) -> x e. C ) |
| 23 | 1 3 | ipole | |- ( ( C e. ( Moore ` X ) /\ y e. C /\ x e. C ) -> ( y ( le ` I ) x <-> y C_ x ) ) |
| 24 | 19 20 22 23 | syl3anc | |- ( ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C ) /\ x e. U ) -> ( y ( le ` I ) x <-> y C_ x ) ) |
| 25 | 24 | biimpd | |- ( ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C ) /\ x e. U ) -> ( y ( le ` I ) x -> y C_ x ) ) |
| 26 | 25 | ralimdva | |- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C ) -> ( A. x e. U y ( le ` I ) x -> A. x e. U y C_ x ) ) |
| 27 | 26 | 3impia | |- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C /\ A. x e. U y ( le ` I ) x ) -> A. x e. U y C_ x ) |
| 28 | ssint | |- ( y C_ |^| U <-> A. x e. U y C_ x ) |
|
| 29 | 27 28 | sylibr | |- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C /\ A. x e. U y ( le ` I ) x ) -> y C_ |^| U ) |
| 30 | simp11 | |- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C /\ A. x e. U y ( le ` I ) x ) -> C e. ( Moore ` X ) ) |
|
| 31 | simp2 | |- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C /\ A. x e. U y ( le ` I ) x ) -> y e. C ) |
|
| 32 | 10 | 3ad2ant1 | |- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C /\ A. x e. U y ( le ` I ) x ) -> |^| U e. C ) |
| 33 | 1 3 | ipole | |- ( ( C e. ( Moore ` X ) /\ y e. C /\ |^| U e. C ) -> ( y ( le ` I ) |^| U <-> y C_ |^| U ) ) |
| 34 | 30 31 32 33 | syl3anc | |- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C /\ A. x e. U y ( le ` I ) x ) -> ( y ( le ` I ) |^| U <-> y C_ |^| U ) ) |
| 35 | 29 34 | mpbird | |- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C /\ A. x e. U y ( le ` I ) x ) -> y ( le ` I ) |^| U ) |
| 36 | 3 5 6 8 9 10 18 35 | posglbdg | |- ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) -> ( G ` U ) = |^| U ) |