This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Greatest lower bounds in a Moore space are realized by intersections. (Contributed by Stefan O'Rear, 31-Jan-2015) (Proof shortened by Zhi Wang, 29-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mreclatGOOD.i | ⊢ 𝐼 = ( toInc ‘ 𝐶 ) | |
| mrelatglbALT.g | ⊢ 𝐺 = ( glb ‘ 𝐼 ) | ||
| Assertion | mrelatglbALT | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) → ( 𝐺 ‘ 𝑈 ) = ∩ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreclatGOOD.i | ⊢ 𝐼 = ( toInc ‘ 𝐶 ) | |
| 2 | mrelatglbALT.g | ⊢ 𝐺 = ( glb ‘ 𝐼 ) | |
| 3 | simp1 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) | |
| 4 | simp2 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) → 𝑈 ⊆ 𝐶 ) | |
| 5 | 2 | a1i | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) → 𝐺 = ( glb ‘ 𝐼 ) ) |
| 6 | mreintcl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) → ∩ 𝑈 ∈ 𝐶 ) | |
| 7 | unimax | ⊢ ( ∩ 𝑈 ∈ 𝐶 → ∪ { 𝑥 ∈ 𝐶 ∣ 𝑥 ⊆ ∩ 𝑈 } = ∩ 𝑈 ) | |
| 8 | 7 | eqcomd | ⊢ ( ∩ 𝑈 ∈ 𝐶 → ∩ 𝑈 = ∪ { 𝑥 ∈ 𝐶 ∣ 𝑥 ⊆ ∩ 𝑈 } ) |
| 9 | 6 8 | syl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) → ∩ 𝑈 = ∪ { 𝑥 ∈ 𝐶 ∣ 𝑥 ⊆ ∩ 𝑈 } ) |
| 10 | 1 3 4 5 9 6 | ipoglb | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) → ( 𝐺 ‘ 𝑈 ) = ∩ 𝑈 ) |