This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens, 11-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mpoxopoveq.f | ⊢ 𝐹 = ( 𝑥 ∈ V , 𝑦 ∈ ( 1st ‘ 𝑥 ) ↦ { 𝑛 ∈ ( 1st ‘ 𝑥 ) ∣ 𝜑 } ) | |
| Assertion | mpoxopoveq | ⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ∧ 𝐾 ∈ 𝑉 ) → ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) = { 𝑛 ∈ 𝑉 ∣ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoxopoveq.f | ⊢ 𝐹 = ( 𝑥 ∈ V , 𝑦 ∈ ( 1st ‘ 𝑥 ) ↦ { 𝑛 ∈ ( 1st ‘ 𝑥 ) ∣ 𝜑 } ) | |
| 2 | 1 | a1i | ⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ∧ 𝐾 ∈ 𝑉 ) → 𝐹 = ( 𝑥 ∈ V , 𝑦 ∈ ( 1st ‘ 𝑥 ) ↦ { 𝑛 ∈ ( 1st ‘ 𝑥 ) ∣ 𝜑 } ) ) |
| 3 | fveq2 | ⊢ ( 𝑥 = 〈 𝑉 , 𝑊 〉 → ( 1st ‘ 𝑥 ) = ( 1st ‘ 〈 𝑉 , 𝑊 〉 ) ) | |
| 4 | op1stg | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( 1st ‘ 〈 𝑉 , 𝑊 〉 ) = 𝑉 ) | |
| 5 | 4 | adantr | ⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ∧ 𝐾 ∈ 𝑉 ) → ( 1st ‘ 〈 𝑉 , 𝑊 〉 ) = 𝑉 ) |
| 6 | 3 5 | sylan9eqr | ⊢ ( ( ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ∧ 𝐾 ∈ 𝑉 ) ∧ 𝑥 = 〈 𝑉 , 𝑊 〉 ) → ( 1st ‘ 𝑥 ) = 𝑉 ) |
| 7 | 6 | adantrr | ⊢ ( ( ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ∧ 𝐾 ∈ 𝑉 ) ∧ ( 𝑥 = 〈 𝑉 , 𝑊 〉 ∧ 𝑦 = 𝐾 ) ) → ( 1st ‘ 𝑥 ) = 𝑉 ) |
| 8 | sbceq1a | ⊢ ( 𝑦 = 𝐾 → ( 𝜑 ↔ [ 𝐾 / 𝑦 ] 𝜑 ) ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝑥 = 〈 𝑉 , 𝑊 〉 ∧ 𝑦 = 𝐾 ) → ( 𝜑 ↔ [ 𝐾 / 𝑦 ] 𝜑 ) ) |
| 10 | 9 | adantl | ⊢ ( ( ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ∧ 𝐾 ∈ 𝑉 ) ∧ ( 𝑥 = 〈 𝑉 , 𝑊 〉 ∧ 𝑦 = 𝐾 ) ) → ( 𝜑 ↔ [ 𝐾 / 𝑦 ] 𝜑 ) ) |
| 11 | sbceq1a | ⊢ ( 𝑥 = 〈 𝑉 , 𝑊 〉 → ( [ 𝐾 / 𝑦 ] 𝜑 ↔ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 ) ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝑥 = 〈 𝑉 , 𝑊 〉 ∧ 𝑦 = 𝐾 ) → ( [ 𝐾 / 𝑦 ] 𝜑 ↔ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 ) ) |
| 13 | 12 | adantl | ⊢ ( ( ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ∧ 𝐾 ∈ 𝑉 ) ∧ ( 𝑥 = 〈 𝑉 , 𝑊 〉 ∧ 𝑦 = 𝐾 ) ) → ( [ 𝐾 / 𝑦 ] 𝜑 ↔ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 ) ) |
| 14 | 10 13 | bitrd | ⊢ ( ( ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ∧ 𝐾 ∈ 𝑉 ) ∧ ( 𝑥 = 〈 𝑉 , 𝑊 〉 ∧ 𝑦 = 𝐾 ) ) → ( 𝜑 ↔ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 ) ) |
| 15 | 7 14 | rabeqbidv | ⊢ ( ( ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ∧ 𝐾 ∈ 𝑉 ) ∧ ( 𝑥 = 〈 𝑉 , 𝑊 〉 ∧ 𝑦 = 𝐾 ) ) → { 𝑛 ∈ ( 1st ‘ 𝑥 ) ∣ 𝜑 } = { 𝑛 ∈ 𝑉 ∣ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } ) |
| 16 | opex | ⊢ 〈 𝑉 , 𝑊 〉 ∈ V | |
| 17 | 16 | a1i | ⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ∧ 𝐾 ∈ 𝑉 ) → 〈 𝑉 , 𝑊 〉 ∈ V ) |
| 18 | simpr | ⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ∧ 𝐾 ∈ 𝑉 ) → 𝐾 ∈ 𝑉 ) | |
| 19 | rabexg | ⊢ ( 𝑉 ∈ 𝑋 → { 𝑛 ∈ 𝑉 ∣ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } ∈ V ) | |
| 20 | 19 | ad2antrr | ⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ∧ 𝐾 ∈ 𝑉 ) → { 𝑛 ∈ 𝑉 ∣ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } ∈ V ) |
| 21 | equid | ⊢ 𝑧 = 𝑧 | |
| 22 | nfvd | ⊢ ( 𝑧 = 𝑧 → Ⅎ 𝑥 ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ∧ 𝐾 ∈ 𝑉 ) ) | |
| 23 | 21 22 | ax-mp | ⊢ Ⅎ 𝑥 ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ∧ 𝐾 ∈ 𝑉 ) |
| 24 | nfvd | ⊢ ( 𝑧 = 𝑧 → Ⅎ 𝑦 ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ∧ 𝐾 ∈ 𝑉 ) ) | |
| 25 | 21 24 | ax-mp | ⊢ Ⅎ 𝑦 ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ∧ 𝐾 ∈ 𝑉 ) |
| 26 | nfcv | ⊢ Ⅎ 𝑦 〈 𝑉 , 𝑊 〉 | |
| 27 | nfcv | ⊢ Ⅎ 𝑥 𝐾 | |
| 28 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 | |
| 29 | nfcv | ⊢ Ⅎ 𝑥 𝑉 | |
| 30 | 28 29 | nfrabw | ⊢ Ⅎ 𝑥 { 𝑛 ∈ 𝑉 ∣ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } |
| 31 | nfsbc1v | ⊢ Ⅎ 𝑦 [ 𝐾 / 𝑦 ] 𝜑 | |
| 32 | 26 31 | nfsbcw | ⊢ Ⅎ 𝑦 [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 |
| 33 | nfcv | ⊢ Ⅎ 𝑦 𝑉 | |
| 34 | 32 33 | nfrabw | ⊢ Ⅎ 𝑦 { 𝑛 ∈ 𝑉 ∣ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } |
| 35 | 2 15 6 17 18 20 23 25 26 27 30 34 | ovmpodxf | ⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ∧ 𝐾 ∈ 𝑉 ) → ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) = { 𝑛 ∈ 𝑉 ∣ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } ) |