This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovmpodx.1 | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) ) | |
| ovmpodx.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝑅 = 𝑆 ) | ||
| ovmpodx.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐷 = 𝐿 ) | ||
| ovmpodx.4 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | ||
| ovmpodx.5 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐿 ) | ||
| ovmpodx.6 | ⊢ ( 𝜑 → 𝑆 ∈ 𝑋 ) | ||
| ovmpodxf.px | ⊢ Ⅎ 𝑥 𝜑 | ||
| ovmpodxf.py | ⊢ Ⅎ 𝑦 𝜑 | ||
| ovmpodxf.ay | ⊢ Ⅎ 𝑦 𝐴 | ||
| ovmpodxf.bx | ⊢ Ⅎ 𝑥 𝐵 | ||
| ovmpodxf.sx | ⊢ Ⅎ 𝑥 𝑆 | ||
| ovmpodxf.sy | ⊢ Ⅎ 𝑦 𝑆 | ||
| Assertion | ovmpodxf | ⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpodx.1 | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) ) | |
| 2 | ovmpodx.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝑅 = 𝑆 ) | |
| 3 | ovmpodx.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐷 = 𝐿 ) | |
| 4 | ovmpodx.4 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | |
| 5 | ovmpodx.5 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐿 ) | |
| 6 | ovmpodx.6 | ⊢ ( 𝜑 → 𝑆 ∈ 𝑋 ) | |
| 7 | ovmpodxf.px | ⊢ Ⅎ 𝑥 𝜑 | |
| 8 | ovmpodxf.py | ⊢ Ⅎ 𝑦 𝜑 | |
| 9 | ovmpodxf.ay | ⊢ Ⅎ 𝑦 𝐴 | |
| 10 | ovmpodxf.bx | ⊢ Ⅎ 𝑥 𝐵 | |
| 11 | ovmpodxf.sx | ⊢ Ⅎ 𝑥 𝑆 | |
| 12 | ovmpodxf.sy | ⊢ Ⅎ 𝑦 𝑆 | |
| 13 | 1 | oveqd | ⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) = ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) ) |
| 14 | eqid | ⊢ ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) | |
| 15 | 14 | ovmpt4g | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) |
| 16 | 15 | a1i | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ) |
| 17 | 8 16 | alrimi | ⊢ ( 𝜑 → ∀ 𝑦 ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ) |
| 18 | 5 17 | spsbcd | ⊢ ( 𝜑 → [ 𝐵 / 𝑦 ] ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ) |
| 19 | 7 18 | alrimi | ⊢ ( 𝜑 → ∀ 𝑥 [ 𝐵 / 𝑦 ] ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ) |
| 20 | 4 19 | spsbcd | ⊢ ( 𝜑 → [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ) |
| 21 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ 𝐿 ) |
| 22 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝑥 = 𝐴 ) | |
| 23 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝐴 ∈ 𝐶 ) |
| 24 | 22 23 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝑥 ∈ 𝐶 ) |
| 25 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝐵 ∈ 𝐿 ) |
| 26 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝑦 = 𝐵 ) | |
| 27 | 3 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝐷 = 𝐿 ) |
| 28 | 25 26 27 | 3eltr4d | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝑦 ∈ 𝐷 ) |
| 29 | 2 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝑅 = 𝑆 ) |
| 30 | 6 | elexd | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 31 | 30 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝑆 ∈ V ) |
| 32 | 29 31 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝑅 ∈ V ) |
| 33 | biimt | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ↔ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ) ) | |
| 34 | 24 28 32 33 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ↔ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ) ) |
| 35 | 22 26 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) ) |
| 36 | 35 29 | eqeq12d | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ↔ ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) ) |
| 37 | 34 36 | bitr3d | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → ( ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ↔ ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) ) |
| 38 | 9 | nfeq2 | ⊢ Ⅎ 𝑦 𝑥 = 𝐴 |
| 39 | 8 38 | nfan | ⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝑥 = 𝐴 ) |
| 40 | nfmpo2 | ⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) | |
| 41 | nfcv | ⊢ Ⅎ 𝑦 𝐵 | |
| 42 | 9 40 41 | nfov | ⊢ Ⅎ 𝑦 ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) |
| 43 | 42 12 | nfeq | ⊢ Ⅎ 𝑦 ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 |
| 44 | 43 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → Ⅎ 𝑦 ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) |
| 45 | 21 37 39 44 | sbciedf | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( [ 𝐵 / 𝑦 ] ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ↔ ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) ) |
| 46 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 47 | nfmpo1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) | |
| 48 | 46 47 10 | nfov | ⊢ Ⅎ 𝑥 ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) |
| 49 | 48 11 | nfeq | ⊢ Ⅎ 𝑥 ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 |
| 50 | 49 | a1i | ⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) |
| 51 | 4 45 7 50 | sbciedf | ⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ↔ ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) ) |
| 52 | 20 51 | mpbid | ⊢ ( 𝜑 → ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) |
| 53 | 13 52 | eqtrd | ⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) |