This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens, 11-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mpoxopoveq.f | |- F = ( x e. _V , y e. ( 1st ` x ) |-> { n e. ( 1st ` x ) | ph } ) |
|
| Assertion | mpoxopoveq | |- ( ( ( V e. X /\ W e. Y ) /\ K e. V ) -> ( <. V , W >. F K ) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoxopoveq.f | |- F = ( x e. _V , y e. ( 1st ` x ) |-> { n e. ( 1st ` x ) | ph } ) |
|
| 2 | 1 | a1i | |- ( ( ( V e. X /\ W e. Y ) /\ K e. V ) -> F = ( x e. _V , y e. ( 1st ` x ) |-> { n e. ( 1st ` x ) | ph } ) ) |
| 3 | fveq2 | |- ( x = <. V , W >. -> ( 1st ` x ) = ( 1st ` <. V , W >. ) ) |
|
| 4 | op1stg | |- ( ( V e. X /\ W e. Y ) -> ( 1st ` <. V , W >. ) = V ) |
|
| 5 | 4 | adantr | |- ( ( ( V e. X /\ W e. Y ) /\ K e. V ) -> ( 1st ` <. V , W >. ) = V ) |
| 6 | 3 5 | sylan9eqr | |- ( ( ( ( V e. X /\ W e. Y ) /\ K e. V ) /\ x = <. V , W >. ) -> ( 1st ` x ) = V ) |
| 7 | 6 | adantrr | |- ( ( ( ( V e. X /\ W e. Y ) /\ K e. V ) /\ ( x = <. V , W >. /\ y = K ) ) -> ( 1st ` x ) = V ) |
| 8 | sbceq1a | |- ( y = K -> ( ph <-> [. K / y ]. ph ) ) |
|
| 9 | 8 | adantl | |- ( ( x = <. V , W >. /\ y = K ) -> ( ph <-> [. K / y ]. ph ) ) |
| 10 | 9 | adantl | |- ( ( ( ( V e. X /\ W e. Y ) /\ K e. V ) /\ ( x = <. V , W >. /\ y = K ) ) -> ( ph <-> [. K / y ]. ph ) ) |
| 11 | sbceq1a | |- ( x = <. V , W >. -> ( [. K / y ]. ph <-> [. <. V , W >. / x ]. [. K / y ]. ph ) ) |
|
| 12 | 11 | adantr | |- ( ( x = <. V , W >. /\ y = K ) -> ( [. K / y ]. ph <-> [. <. V , W >. / x ]. [. K / y ]. ph ) ) |
| 13 | 12 | adantl | |- ( ( ( ( V e. X /\ W e. Y ) /\ K e. V ) /\ ( x = <. V , W >. /\ y = K ) ) -> ( [. K / y ]. ph <-> [. <. V , W >. / x ]. [. K / y ]. ph ) ) |
| 14 | 10 13 | bitrd | |- ( ( ( ( V e. X /\ W e. Y ) /\ K e. V ) /\ ( x = <. V , W >. /\ y = K ) ) -> ( ph <-> [. <. V , W >. / x ]. [. K / y ]. ph ) ) |
| 15 | 7 14 | rabeqbidv | |- ( ( ( ( V e. X /\ W e. Y ) /\ K e. V ) /\ ( x = <. V , W >. /\ y = K ) ) -> { n e. ( 1st ` x ) | ph } = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) |
| 16 | opex | |- <. V , W >. e. _V |
|
| 17 | 16 | a1i | |- ( ( ( V e. X /\ W e. Y ) /\ K e. V ) -> <. V , W >. e. _V ) |
| 18 | simpr | |- ( ( ( V e. X /\ W e. Y ) /\ K e. V ) -> K e. V ) |
|
| 19 | rabexg | |- ( V e. X -> { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } e. _V ) |
|
| 20 | 19 | ad2antrr | |- ( ( ( V e. X /\ W e. Y ) /\ K e. V ) -> { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } e. _V ) |
| 21 | equid | |- z = z |
|
| 22 | nfvd | |- ( z = z -> F/ x ( ( V e. X /\ W e. Y ) /\ K e. V ) ) |
|
| 23 | 21 22 | ax-mp | |- F/ x ( ( V e. X /\ W e. Y ) /\ K e. V ) |
| 24 | nfvd | |- ( z = z -> F/ y ( ( V e. X /\ W e. Y ) /\ K e. V ) ) |
|
| 25 | 21 24 | ax-mp | |- F/ y ( ( V e. X /\ W e. Y ) /\ K e. V ) |
| 26 | nfcv | |- F/_ y <. V , W >. |
|
| 27 | nfcv | |- F/_ x K |
|
| 28 | nfsbc1v | |- F/ x [. <. V , W >. / x ]. [. K / y ]. ph |
|
| 29 | nfcv | |- F/_ x V |
|
| 30 | 28 29 | nfrabw | |- F/_ x { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } |
| 31 | nfsbc1v | |- F/ y [. K / y ]. ph |
|
| 32 | 26 31 | nfsbcw | |- F/ y [. <. V , W >. / x ]. [. K / y ]. ph |
| 33 | nfcv | |- F/_ y V |
|
| 34 | 32 33 | nfrabw | |- F/_ y { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } |
| 35 | 2 15 6 17 18 20 23 25 26 27 30 34 | ovmpodxf | |- ( ( ( V e. X /\ W e. Y ) /\ K e. V ) -> ( <. V , W >. F K ) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) |