This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens and Mario Carneiro, 10-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mpoxopoveq.f | ⊢ 𝐹 = ( 𝑥 ∈ V , 𝑦 ∈ ( 1st ‘ 𝑥 ) ↦ { 𝑛 ∈ ( 1st ‘ 𝑥 ) ∣ 𝜑 } ) | |
| Assertion | mpoxopovel | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( 𝑁 ∈ ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) ↔ ( 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] [ 𝑁 / 𝑛 ] 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoxopoveq.f | ⊢ 𝐹 = ( 𝑥 ∈ V , 𝑦 ∈ ( 1st ‘ 𝑥 ) ↦ { 𝑛 ∈ ( 1st ‘ 𝑥 ) ∣ 𝜑 } ) | |
| 2 | 1 | mpoxopn0yelv | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( 𝑁 ∈ ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) → 𝐾 ∈ 𝑉 ) ) |
| 3 | 2 | pm4.71rd | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( 𝑁 ∈ ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) ↔ ( 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) ) ) ) |
| 4 | 1 | mpoxopoveq | ⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ∧ 𝐾 ∈ 𝑉 ) → ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) = { 𝑛 ∈ 𝑉 ∣ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } ) |
| 5 | 4 | eleq2d | ⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ∧ 𝐾 ∈ 𝑉 ) → ( 𝑁 ∈ ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) ↔ 𝑁 ∈ { 𝑛 ∈ 𝑉 ∣ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } ) ) |
| 6 | nfcv | ⊢ Ⅎ 𝑛 𝑉 | |
| 7 | 6 | elrabsf | ⊢ ( 𝑁 ∈ { 𝑛 ∈ 𝑉 ∣ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } ↔ ( 𝑁 ∈ 𝑉 ∧ [ 𝑁 / 𝑛 ] [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 ) ) |
| 8 | sbccom | ⊢ ( [ 𝑁 / 𝑛 ] [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 ↔ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝑁 / 𝑛 ] [ 𝐾 / 𝑦 ] 𝜑 ) | |
| 9 | sbccom | ⊢ ( [ 𝑁 / 𝑛 ] [ 𝐾 / 𝑦 ] 𝜑 ↔ [ 𝐾 / 𝑦 ] [ 𝑁 / 𝑛 ] 𝜑 ) | |
| 10 | 9 | sbcbii | ⊢ ( [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝑁 / 𝑛 ] [ 𝐾 / 𝑦 ] 𝜑 ↔ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] [ 𝑁 / 𝑛 ] 𝜑 ) |
| 11 | 8 10 | bitri | ⊢ ( [ 𝑁 / 𝑛 ] [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 ↔ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] [ 𝑁 / 𝑛 ] 𝜑 ) |
| 12 | 11 | anbi2i | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ [ 𝑁 / 𝑛 ] [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 ) ↔ ( 𝑁 ∈ 𝑉 ∧ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] [ 𝑁 / 𝑛 ] 𝜑 ) ) |
| 13 | 7 12 | bitri | ⊢ ( 𝑁 ∈ { 𝑛 ∈ 𝑉 ∣ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } ↔ ( 𝑁 ∈ 𝑉 ∧ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] [ 𝑁 / 𝑛 ] 𝜑 ) ) |
| 14 | 5 13 | bitrdi | ⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ∧ 𝐾 ∈ 𝑉 ) → ( 𝑁 ∈ ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) ↔ ( 𝑁 ∈ 𝑉 ∧ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] [ 𝑁 / 𝑛 ] 𝜑 ) ) ) |
| 15 | 14 | pm5.32da | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( ( 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) ) ↔ ( 𝐾 ∈ 𝑉 ∧ ( 𝑁 ∈ 𝑉 ∧ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] [ 𝑁 / 𝑛 ] 𝜑 ) ) ) ) |
| 16 | 3anass | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] [ 𝑁 / 𝑛 ] 𝜑 ) ↔ ( 𝐾 ∈ 𝑉 ∧ ( 𝑁 ∈ 𝑉 ∧ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] [ 𝑁 / 𝑛 ] 𝜑 ) ) ) | |
| 17 | 15 16 | bitr4di | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( ( 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) ) ↔ ( 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] [ 𝑁 / 𝑛 ] 𝜑 ) ) ) |
| 18 | 3 17 | bitrd | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( 𝑁 ∈ ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) ↔ ( 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] [ 𝑁 / 𝑛 ] 𝜑 ) ) ) |