This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens and Mario Carneiro, 10-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mpoxopoveq.f | |- F = ( x e. _V , y e. ( 1st ` x ) |-> { n e. ( 1st ` x ) | ph } ) |
|
| Assertion | mpoxopovel | |- ( ( V e. X /\ W e. Y ) -> ( N e. ( <. V , W >. F K ) <-> ( K e. V /\ N e. V /\ [. <. V , W >. / x ]. [. K / y ]. [. N / n ]. ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoxopoveq.f | |- F = ( x e. _V , y e. ( 1st ` x ) |-> { n e. ( 1st ` x ) | ph } ) |
|
| 2 | 1 | mpoxopn0yelv | |- ( ( V e. X /\ W e. Y ) -> ( N e. ( <. V , W >. F K ) -> K e. V ) ) |
| 3 | 2 | pm4.71rd | |- ( ( V e. X /\ W e. Y ) -> ( N e. ( <. V , W >. F K ) <-> ( K e. V /\ N e. ( <. V , W >. F K ) ) ) ) |
| 4 | 1 | mpoxopoveq | |- ( ( ( V e. X /\ W e. Y ) /\ K e. V ) -> ( <. V , W >. F K ) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) |
| 5 | 4 | eleq2d | |- ( ( ( V e. X /\ W e. Y ) /\ K e. V ) -> ( N e. ( <. V , W >. F K ) <-> N e. { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) ) |
| 6 | nfcv | |- F/_ n V |
|
| 7 | 6 | elrabsf | |- ( N e. { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } <-> ( N e. V /\ [. N / n ]. [. <. V , W >. / x ]. [. K / y ]. ph ) ) |
| 8 | sbccom | |- ( [. N / n ]. [. <. V , W >. / x ]. [. K / y ]. ph <-> [. <. V , W >. / x ]. [. N / n ]. [. K / y ]. ph ) |
|
| 9 | sbccom | |- ( [. N / n ]. [. K / y ]. ph <-> [. K / y ]. [. N / n ]. ph ) |
|
| 10 | 9 | sbcbii | |- ( [. <. V , W >. / x ]. [. N / n ]. [. K / y ]. ph <-> [. <. V , W >. / x ]. [. K / y ]. [. N / n ]. ph ) |
| 11 | 8 10 | bitri | |- ( [. N / n ]. [. <. V , W >. / x ]. [. K / y ]. ph <-> [. <. V , W >. / x ]. [. K / y ]. [. N / n ]. ph ) |
| 12 | 11 | anbi2i | |- ( ( N e. V /\ [. N / n ]. [. <. V , W >. / x ]. [. K / y ]. ph ) <-> ( N e. V /\ [. <. V , W >. / x ]. [. K / y ]. [. N / n ]. ph ) ) |
| 13 | 7 12 | bitri | |- ( N e. { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } <-> ( N e. V /\ [. <. V , W >. / x ]. [. K / y ]. [. N / n ]. ph ) ) |
| 14 | 5 13 | bitrdi | |- ( ( ( V e. X /\ W e. Y ) /\ K e. V ) -> ( N e. ( <. V , W >. F K ) <-> ( N e. V /\ [. <. V , W >. / x ]. [. K / y ]. [. N / n ]. ph ) ) ) |
| 15 | 14 | pm5.32da | |- ( ( V e. X /\ W e. Y ) -> ( ( K e. V /\ N e. ( <. V , W >. F K ) ) <-> ( K e. V /\ ( N e. V /\ [. <. V , W >. / x ]. [. K / y ]. [. N / n ]. ph ) ) ) ) |
| 16 | 3anass | |- ( ( K e. V /\ N e. V /\ [. <. V , W >. / x ]. [. K / y ]. [. N / n ]. ph ) <-> ( K e. V /\ ( N e. V /\ [. <. V , W >. / x ]. [. K / y ]. [. N / n ]. ph ) ) ) |
|
| 17 | 15 16 | bitr4di | |- ( ( V e. X /\ W e. Y ) -> ( ( K e. V /\ N e. ( <. V , W >. F K ) ) <-> ( K e. V /\ N e. V /\ [. <. V , W >. / x ]. [. K / y ]. [. N / n ]. ph ) ) ) |
| 18 | 3 17 | bitrd | |- ( ( V e. X /\ W e. Y ) -> ( N e. ( <. V , W >. F K ) <-> ( K e. V /\ N e. V /\ [. <. V , W >. / x ]. [. K / y ]. [. N / n ]. ph ) ) ) |