This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, deduction version. (Contributed by Alexander van der Vekens, 11-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpoxopoveq.f | ⊢ 𝐹 = ( 𝑥 ∈ V , 𝑦 ∈ ( 1st ‘ 𝑥 ) ↦ { 𝑛 ∈ ( 1st ‘ 𝑥 ) ∣ 𝜑 } ) | |
| mpoxopoveqd.1 | ⊢ ( 𝜓 → ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ) | ||
| mpoxopoveqd.2 | ⊢ ( ( 𝜓 ∧ ¬ 𝐾 ∈ 𝑉 ) → { 𝑛 ∈ 𝑉 ∣ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } = ∅ ) | ||
| Assertion | mpoxopoveqd | ⊢ ( 𝜓 → ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) = { 𝑛 ∈ 𝑉 ∣ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoxopoveq.f | ⊢ 𝐹 = ( 𝑥 ∈ V , 𝑦 ∈ ( 1st ‘ 𝑥 ) ↦ { 𝑛 ∈ ( 1st ‘ 𝑥 ) ∣ 𝜑 } ) | |
| 2 | mpoxopoveqd.1 | ⊢ ( 𝜓 → ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ) | |
| 3 | mpoxopoveqd.2 | ⊢ ( ( 𝜓 ∧ ¬ 𝐾 ∈ 𝑉 ) → { 𝑛 ∈ 𝑉 ∣ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } = ∅ ) | |
| 4 | 1 | mpoxopoveq | ⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ∧ 𝐾 ∈ 𝑉 ) → ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) = { 𝑛 ∈ 𝑉 ∣ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } ) |
| 5 | 4 | ex | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( 𝐾 ∈ 𝑉 → ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) = { 𝑛 ∈ 𝑉 ∣ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } ) ) |
| 6 | 5 2 | syl11 | ⊢ ( 𝐾 ∈ 𝑉 → ( 𝜓 → ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) = { 𝑛 ∈ 𝑉 ∣ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } ) ) |
| 7 | df-nel | ⊢ ( 𝐾 ∉ 𝑉 ↔ ¬ 𝐾 ∈ 𝑉 ) | |
| 8 | 1 | mpoxopynvov0 | ⊢ ( 𝐾 ∉ 𝑉 → ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) = ∅ ) |
| 9 | 7 8 | sylbir | ⊢ ( ¬ 𝐾 ∈ 𝑉 → ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) = ∅ ) |
| 10 | 9 | adantr | ⊢ ( ( ¬ 𝐾 ∈ 𝑉 ∧ 𝜓 ) → ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) = ∅ ) |
| 11 | 3 | eqcomd | ⊢ ( ( 𝜓 ∧ ¬ 𝐾 ∈ 𝑉 ) → ∅ = { 𝑛 ∈ 𝑉 ∣ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } ) |
| 12 | 11 | ancoms | ⊢ ( ( ¬ 𝐾 ∈ 𝑉 ∧ 𝜓 ) → ∅ = { 𝑛 ∈ 𝑉 ∣ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } ) |
| 13 | 10 12 | eqtrd | ⊢ ( ( ¬ 𝐾 ∈ 𝑉 ∧ 𝜓 ) → ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) = { 𝑛 ∈ 𝑉 ∣ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } ) |
| 14 | 13 | ex | ⊢ ( ¬ 𝐾 ∈ 𝑉 → ( 𝜓 → ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) = { 𝑛 ∈ 𝑉 ∣ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } ) ) |
| 15 | 6 14 | pm2.61i | ⊢ ( 𝜓 → ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) = { 𝑛 ∈ 𝑉 ∣ [ 〈 𝑉 , 𝑊 〉 / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } ) |