This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same monomorphisms. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | monpropd.3 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| monpropd.4 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | ||
| monpropd.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| monpropd.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| Assertion | monpropd | ⊢ ( 𝜑 → ( Mono ‘ 𝐶 ) = ( Mono ‘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | monpropd.3 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| 2 | monpropd.4 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | |
| 3 | monpropd.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | monpropd.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 6 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 7 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 8 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 9 | 8 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 10 | simpr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) → 𝑐 ∈ ( Base ‘ 𝐶 ) ) | |
| 11 | simp-4r | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) → 𝑎 ∈ ( Base ‘ 𝐶 ) ) | |
| 12 | 5 6 7 9 10 11 | homfeqval | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) = ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ) |
| 13 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 14 | eqid | ⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) | |
| 15 | 1 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 16 | 2 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 17 | simplr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ) → 𝑐 ∈ ( Base ‘ 𝐶 ) ) | |
| 18 | simp-5r | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ) → 𝑎 ∈ ( Base ‘ 𝐶 ) ) | |
| 19 | simp-4r | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ) → 𝑏 ∈ ( Base ‘ 𝐶 ) ) | |
| 20 | simpr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ) → 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ) | |
| 21 | simpllr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ) → 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) | |
| 22 | 5 6 13 14 15 16 17 18 19 20 21 | comfeqval | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) = ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) |
| 23 | 12 22 | mpteq12dva | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) = ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) ) |
| 24 | 23 | cnveqd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) → ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) = ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) ) |
| 25 | 24 | funeqd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) → ( Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) ↔ Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) ) ) |
| 26 | 25 | ralbidva | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) → ( ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) ↔ ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) ) ) |
| 27 | 26 | rabbidva | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) } = { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) |
| 28 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → 𝑎 ∈ ( Base ‘ 𝐶 ) ) | |
| 29 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → 𝑏 ∈ ( Base ‘ 𝐶 ) ) | |
| 30 | 5 6 7 8 28 29 | homfeqval | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) = ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ) |
| 31 | 1 | homfeqbas | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 32 | 31 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 33 | 32 | raleqdv | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) ↔ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) ) ) |
| 34 | 30 33 | rabeqbidv | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } = { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) |
| 35 | 27 34 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) } = { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) |
| 36 | 35 | 3impa | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) } = { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) |
| 37 | 36 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑎 ∈ ( Base ‘ 𝐶 ) , 𝑏 ∈ ( Base ‘ 𝐶 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) } ) = ( 𝑎 ∈ ( Base ‘ 𝐶 ) , 𝑏 ∈ ( Base ‘ 𝐶 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) ) |
| 38 | mpoeq12 | ⊢ ( ( ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ∧ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) → ( 𝑎 ∈ ( Base ‘ 𝐶 ) , 𝑏 ∈ ( Base ‘ 𝐶 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) = ( 𝑎 ∈ ( Base ‘ 𝐷 ) , 𝑏 ∈ ( Base ‘ 𝐷 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) ) | |
| 39 | 31 31 38 | syl2anc | ⊢ ( 𝜑 → ( 𝑎 ∈ ( Base ‘ 𝐶 ) , 𝑏 ∈ ( Base ‘ 𝐶 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) = ( 𝑎 ∈ ( Base ‘ 𝐷 ) , 𝑏 ∈ ( Base ‘ 𝐷 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) ) |
| 40 | 37 39 | eqtrd | ⊢ ( 𝜑 → ( 𝑎 ∈ ( Base ‘ 𝐶 ) , 𝑏 ∈ ( Base ‘ 𝐶 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) } ) = ( 𝑎 ∈ ( Base ‘ 𝐷 ) , 𝑏 ∈ ( Base ‘ 𝐷 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) ) |
| 41 | eqid | ⊢ ( Mono ‘ 𝐶 ) = ( Mono ‘ 𝐶 ) | |
| 42 | 5 6 13 41 3 | monfval | ⊢ ( 𝜑 → ( Mono ‘ 𝐶 ) = ( 𝑎 ∈ ( Base ‘ 𝐶 ) , 𝑏 ∈ ( Base ‘ 𝐶 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) } ) ) |
| 43 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 44 | eqid | ⊢ ( Mono ‘ 𝐷 ) = ( Mono ‘ 𝐷 ) | |
| 45 | 43 7 14 44 4 | monfval | ⊢ ( 𝜑 → ( Mono ‘ 𝐷 ) = ( 𝑎 ∈ ( Base ‘ 𝐷 ) , 𝑏 ∈ ( Base ‘ 𝐷 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) ) |
| 46 | 40 42 45 | 3eqtr4d | ⊢ ( 𝜑 → ( Mono ‘ 𝐶 ) = ( Mono ‘ 𝐷 ) ) |