This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a monomorphism in a category. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismon.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| ismon.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| ismon.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| ismon.s | ⊢ 𝑀 = ( Mono ‘ 𝐶 ) | ||
| ismon.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| Assertion | monfval | ⊢ ( 𝜑 → 𝑀 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∣ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 · 𝑦 ) 𝑔 ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismon.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | ismon.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | ismon.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 4 | ismon.s | ⊢ 𝑀 = ( Mono ‘ 𝐶 ) | |
| 5 | ismon.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 6 | fvexd | ⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) ∈ V ) | |
| 7 | fveq2 | ⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = ( Base ‘ 𝐶 ) ) | |
| 8 | 7 1 | eqtr4di | ⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = 𝐵 ) |
| 9 | fvexd | ⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → ( Hom ‘ 𝑐 ) ∈ V ) | |
| 10 | simpl | ⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → 𝑐 = 𝐶 ) | |
| 11 | 10 | fveq2d | ⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → ( Hom ‘ 𝑐 ) = ( Hom ‘ 𝐶 ) ) |
| 12 | 11 2 | eqtr4di | ⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → ( Hom ‘ 𝑐 ) = 𝐻 ) |
| 13 | simplr | ⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → 𝑏 = 𝐵 ) | |
| 14 | simpr | ⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ℎ = 𝐻 ) | |
| 15 | 14 | oveqd | ⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑥 ℎ 𝑦 ) = ( 𝑥 𝐻 𝑦 ) ) |
| 16 | 14 | oveqd | ⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑧 ℎ 𝑥 ) = ( 𝑧 𝐻 𝑥 ) ) |
| 17 | simpll | ⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → 𝑐 = 𝐶 ) | |
| 18 | 17 | fveq2d | ⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( comp ‘ 𝑐 ) = ( comp ‘ 𝐶 ) ) |
| 19 | 18 3 | eqtr4di | ⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( comp ‘ 𝑐 ) = · ) |
| 20 | 19 | oveqd | ⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) = ( 〈 𝑧 , 𝑥 〉 · 𝑦 ) ) |
| 21 | 20 | oveqd | ⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) = ( 𝑓 ( 〈 𝑧 , 𝑥 〉 · 𝑦 ) 𝑔 ) ) |
| 22 | 16 21 | mpteq12dv | ⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) = ( 𝑔 ∈ ( 𝑧 𝐻 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 · 𝑦 ) 𝑔 ) ) ) |
| 23 | 22 | cnveqd | ⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ◡ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) = ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 · 𝑦 ) 𝑔 ) ) ) |
| 24 | 23 | funeqd | ⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( Fun ◡ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) ↔ Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 · 𝑦 ) 𝑔 ) ) ) ) |
| 25 | 13 24 | raleqbidv | ⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( ∀ 𝑧 ∈ 𝑏 Fun ◡ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) ↔ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 · 𝑦 ) 𝑔 ) ) ) ) |
| 26 | 15 25 | rabeqbidv | ⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → { 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∣ ∀ 𝑧 ∈ 𝑏 Fun ◡ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) } = { 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∣ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 · 𝑦 ) 𝑔 ) ) } ) |
| 27 | 13 13 26 | mpoeq123dv | ⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ { 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∣ ∀ 𝑧 ∈ 𝑏 Fun ◡ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) } ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∣ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 · 𝑦 ) 𝑔 ) ) } ) ) |
| 28 | 9 12 27 | csbied2 | ⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → ⦋ ( Hom ‘ 𝑐 ) / ℎ ⦌ ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ { 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∣ ∀ 𝑧 ∈ 𝑏 Fun ◡ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) } ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∣ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 · 𝑦 ) 𝑔 ) ) } ) ) |
| 29 | 6 8 28 | csbied2 | ⊢ ( 𝑐 = 𝐶 → ⦋ ( Base ‘ 𝑐 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑐 ) / ℎ ⦌ ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ { 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∣ ∀ 𝑧 ∈ 𝑏 Fun ◡ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) } ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∣ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 · 𝑦 ) 𝑔 ) ) } ) ) |
| 30 | df-mon | ⊢ Mono = ( 𝑐 ∈ Cat ↦ ⦋ ( Base ‘ 𝑐 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑐 ) / ℎ ⦌ ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ { 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∣ ∀ 𝑧 ∈ 𝑏 Fun ◡ ( 𝑔 ∈ ( 𝑧 ℎ 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑦 ) 𝑔 ) ) } ) ) | |
| 31 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 32 | 31 31 | mpoex | ⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∣ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 · 𝑦 ) 𝑔 ) ) } ) ∈ V |
| 33 | 29 30 32 | fvmpt | ⊢ ( 𝐶 ∈ Cat → ( Mono ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∣ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 · 𝑦 ) 𝑔 ) ) } ) ) |
| 34 | 5 33 | syl | ⊢ ( 𝜑 → ( Mono ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∣ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 · 𝑦 ) 𝑔 ) ) } ) ) |
| 35 | 4 34 | eqtrid | ⊢ ( 𝜑 → 𝑀 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∣ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑥 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑥 〉 · 𝑦 ) 𝑔 ) ) } ) ) |