This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same monomorphisms. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | monpropd.3 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| monpropd.4 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
||
| monpropd.c | |- ( ph -> C e. Cat ) |
||
| monpropd.d | |- ( ph -> D e. Cat ) |
||
| Assertion | monpropd | |- ( ph -> ( Mono ` C ) = ( Mono ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | monpropd.3 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| 2 | monpropd.4 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
|
| 3 | monpropd.c | |- ( ph -> C e. Cat ) |
|
| 4 | monpropd.d | |- ( ph -> D e. Cat ) |
|
| 5 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 6 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 7 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 8 | 1 | ad2antrr | |- ( ( ( ph /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 9 | 8 | ad2antrr | |- ( ( ( ( ( ph /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) /\ f e. ( a ( Hom ` C ) b ) ) /\ c e. ( Base ` C ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 10 | simpr | |- ( ( ( ( ( ph /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) /\ f e. ( a ( Hom ` C ) b ) ) /\ c e. ( Base ` C ) ) -> c e. ( Base ` C ) ) |
|
| 11 | simp-4r | |- ( ( ( ( ( ph /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) /\ f e. ( a ( Hom ` C ) b ) ) /\ c e. ( Base ` C ) ) -> a e. ( Base ` C ) ) |
|
| 12 | 5 6 7 9 10 11 | homfeqval | |- ( ( ( ( ( ph /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) /\ f e. ( a ( Hom ` C ) b ) ) /\ c e. ( Base ` C ) ) -> ( c ( Hom ` C ) a ) = ( c ( Hom ` D ) a ) ) |
| 13 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 14 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 15 | 1 | ad5antr | |- ( ( ( ( ( ( ph /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) /\ f e. ( a ( Hom ` C ) b ) ) /\ c e. ( Base ` C ) ) /\ g e. ( c ( Hom ` C ) a ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 16 | 2 | ad5antr | |- ( ( ( ( ( ( ph /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) /\ f e. ( a ( Hom ` C ) b ) ) /\ c e. ( Base ` C ) ) /\ g e. ( c ( Hom ` C ) a ) ) -> ( comf ` C ) = ( comf ` D ) ) |
| 17 | simplr | |- ( ( ( ( ( ( ph /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) /\ f e. ( a ( Hom ` C ) b ) ) /\ c e. ( Base ` C ) ) /\ g e. ( c ( Hom ` C ) a ) ) -> c e. ( Base ` C ) ) |
|
| 18 | simp-5r | |- ( ( ( ( ( ( ph /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) /\ f e. ( a ( Hom ` C ) b ) ) /\ c e. ( Base ` C ) ) /\ g e. ( c ( Hom ` C ) a ) ) -> a e. ( Base ` C ) ) |
|
| 19 | simp-4r | |- ( ( ( ( ( ( ph /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) /\ f e. ( a ( Hom ` C ) b ) ) /\ c e. ( Base ` C ) ) /\ g e. ( c ( Hom ` C ) a ) ) -> b e. ( Base ` C ) ) |
|
| 20 | simpr | |- ( ( ( ( ( ( ph /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) /\ f e. ( a ( Hom ` C ) b ) ) /\ c e. ( Base ` C ) ) /\ g e. ( c ( Hom ` C ) a ) ) -> g e. ( c ( Hom ` C ) a ) ) |
|
| 21 | simpllr | |- ( ( ( ( ( ( ph /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) /\ f e. ( a ( Hom ` C ) b ) ) /\ c e. ( Base ` C ) ) /\ g e. ( c ( Hom ` C ) a ) ) -> f e. ( a ( Hom ` C ) b ) ) |
|
| 22 | 5 6 13 14 15 16 17 18 19 20 21 | comfeqval | |- ( ( ( ( ( ( ph /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) /\ f e. ( a ( Hom ` C ) b ) ) /\ c e. ( Base ` C ) ) /\ g e. ( c ( Hom ` C ) a ) ) -> ( f ( <. c , a >. ( comp ` C ) b ) g ) = ( f ( <. c , a >. ( comp ` D ) b ) g ) ) |
| 23 | 12 22 | mpteq12dva | |- ( ( ( ( ( ph /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) /\ f e. ( a ( Hom ` C ) b ) ) /\ c e. ( Base ` C ) ) -> ( g e. ( c ( Hom ` C ) a ) |-> ( f ( <. c , a >. ( comp ` C ) b ) g ) ) = ( g e. ( c ( Hom ` D ) a ) |-> ( f ( <. c , a >. ( comp ` D ) b ) g ) ) ) |
| 24 | 23 | cnveqd | |- ( ( ( ( ( ph /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) /\ f e. ( a ( Hom ` C ) b ) ) /\ c e. ( Base ` C ) ) -> `' ( g e. ( c ( Hom ` C ) a ) |-> ( f ( <. c , a >. ( comp ` C ) b ) g ) ) = `' ( g e. ( c ( Hom ` D ) a ) |-> ( f ( <. c , a >. ( comp ` D ) b ) g ) ) ) |
| 25 | 24 | funeqd | |- ( ( ( ( ( ph /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) /\ f e. ( a ( Hom ` C ) b ) ) /\ c e. ( Base ` C ) ) -> ( Fun `' ( g e. ( c ( Hom ` C ) a ) |-> ( f ( <. c , a >. ( comp ` C ) b ) g ) ) <-> Fun `' ( g e. ( c ( Hom ` D ) a ) |-> ( f ( <. c , a >. ( comp ` D ) b ) g ) ) ) ) |
| 26 | 25 | ralbidva | |- ( ( ( ( ph /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) /\ f e. ( a ( Hom ` C ) b ) ) -> ( A. c e. ( Base ` C ) Fun `' ( g e. ( c ( Hom ` C ) a ) |-> ( f ( <. c , a >. ( comp ` C ) b ) g ) ) <-> A. c e. ( Base ` C ) Fun `' ( g e. ( c ( Hom ` D ) a ) |-> ( f ( <. c , a >. ( comp ` D ) b ) g ) ) ) ) |
| 27 | 26 | rabbidva | |- ( ( ( ph /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) -> { f e. ( a ( Hom ` C ) b ) | A. c e. ( Base ` C ) Fun `' ( g e. ( c ( Hom ` C ) a ) |-> ( f ( <. c , a >. ( comp ` C ) b ) g ) ) } = { f e. ( a ( Hom ` C ) b ) | A. c e. ( Base ` C ) Fun `' ( g e. ( c ( Hom ` D ) a ) |-> ( f ( <. c , a >. ( comp ` D ) b ) g ) ) } ) |
| 28 | simplr | |- ( ( ( ph /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) -> a e. ( Base ` C ) ) |
|
| 29 | simpr | |- ( ( ( ph /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) -> b e. ( Base ` C ) ) |
|
| 30 | 5 6 7 8 28 29 | homfeqval | |- ( ( ( ph /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) -> ( a ( Hom ` C ) b ) = ( a ( Hom ` D ) b ) ) |
| 31 | 1 | homfeqbas | |- ( ph -> ( Base ` C ) = ( Base ` D ) ) |
| 32 | 31 | ad2antrr | |- ( ( ( ph /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) -> ( Base ` C ) = ( Base ` D ) ) |
| 33 | 32 | raleqdv | |- ( ( ( ph /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) -> ( A. c e. ( Base ` C ) Fun `' ( g e. ( c ( Hom ` D ) a ) |-> ( f ( <. c , a >. ( comp ` D ) b ) g ) ) <-> A. c e. ( Base ` D ) Fun `' ( g e. ( c ( Hom ` D ) a ) |-> ( f ( <. c , a >. ( comp ` D ) b ) g ) ) ) ) |
| 34 | 30 33 | rabeqbidv | |- ( ( ( ph /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) -> { f e. ( a ( Hom ` C ) b ) | A. c e. ( Base ` C ) Fun `' ( g e. ( c ( Hom ` D ) a ) |-> ( f ( <. c , a >. ( comp ` D ) b ) g ) ) } = { f e. ( a ( Hom ` D ) b ) | A. c e. ( Base ` D ) Fun `' ( g e. ( c ( Hom ` D ) a ) |-> ( f ( <. c , a >. ( comp ` D ) b ) g ) ) } ) |
| 35 | 27 34 | eqtrd | |- ( ( ( ph /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) -> { f e. ( a ( Hom ` C ) b ) | A. c e. ( Base ` C ) Fun `' ( g e. ( c ( Hom ` C ) a ) |-> ( f ( <. c , a >. ( comp ` C ) b ) g ) ) } = { f e. ( a ( Hom ` D ) b ) | A. c e. ( Base ` D ) Fun `' ( g e. ( c ( Hom ` D ) a ) |-> ( f ( <. c , a >. ( comp ` D ) b ) g ) ) } ) |
| 36 | 35 | 3impa | |- ( ( ph /\ a e. ( Base ` C ) /\ b e. ( Base ` C ) ) -> { f e. ( a ( Hom ` C ) b ) | A. c e. ( Base ` C ) Fun `' ( g e. ( c ( Hom ` C ) a ) |-> ( f ( <. c , a >. ( comp ` C ) b ) g ) ) } = { f e. ( a ( Hom ` D ) b ) | A. c e. ( Base ` D ) Fun `' ( g e. ( c ( Hom ` D ) a ) |-> ( f ( <. c , a >. ( comp ` D ) b ) g ) ) } ) |
| 37 | 36 | mpoeq3dva | |- ( ph -> ( a e. ( Base ` C ) , b e. ( Base ` C ) |-> { f e. ( a ( Hom ` C ) b ) | A. c e. ( Base ` C ) Fun `' ( g e. ( c ( Hom ` C ) a ) |-> ( f ( <. c , a >. ( comp ` C ) b ) g ) ) } ) = ( a e. ( Base ` C ) , b e. ( Base ` C ) |-> { f e. ( a ( Hom ` D ) b ) | A. c e. ( Base ` D ) Fun `' ( g e. ( c ( Hom ` D ) a ) |-> ( f ( <. c , a >. ( comp ` D ) b ) g ) ) } ) ) |
| 38 | mpoeq12 | |- ( ( ( Base ` C ) = ( Base ` D ) /\ ( Base ` C ) = ( Base ` D ) ) -> ( a e. ( Base ` C ) , b e. ( Base ` C ) |-> { f e. ( a ( Hom ` D ) b ) | A. c e. ( Base ` D ) Fun `' ( g e. ( c ( Hom ` D ) a ) |-> ( f ( <. c , a >. ( comp ` D ) b ) g ) ) } ) = ( a e. ( Base ` D ) , b e. ( Base ` D ) |-> { f e. ( a ( Hom ` D ) b ) | A. c e. ( Base ` D ) Fun `' ( g e. ( c ( Hom ` D ) a ) |-> ( f ( <. c , a >. ( comp ` D ) b ) g ) ) } ) ) |
|
| 39 | 31 31 38 | syl2anc | |- ( ph -> ( a e. ( Base ` C ) , b e. ( Base ` C ) |-> { f e. ( a ( Hom ` D ) b ) | A. c e. ( Base ` D ) Fun `' ( g e. ( c ( Hom ` D ) a ) |-> ( f ( <. c , a >. ( comp ` D ) b ) g ) ) } ) = ( a e. ( Base ` D ) , b e. ( Base ` D ) |-> { f e. ( a ( Hom ` D ) b ) | A. c e. ( Base ` D ) Fun `' ( g e. ( c ( Hom ` D ) a ) |-> ( f ( <. c , a >. ( comp ` D ) b ) g ) ) } ) ) |
| 40 | 37 39 | eqtrd | |- ( ph -> ( a e. ( Base ` C ) , b e. ( Base ` C ) |-> { f e. ( a ( Hom ` C ) b ) | A. c e. ( Base ` C ) Fun `' ( g e. ( c ( Hom ` C ) a ) |-> ( f ( <. c , a >. ( comp ` C ) b ) g ) ) } ) = ( a e. ( Base ` D ) , b e. ( Base ` D ) |-> { f e. ( a ( Hom ` D ) b ) | A. c e. ( Base ` D ) Fun `' ( g e. ( c ( Hom ` D ) a ) |-> ( f ( <. c , a >. ( comp ` D ) b ) g ) ) } ) ) |
| 41 | eqid | |- ( Mono ` C ) = ( Mono ` C ) |
|
| 42 | 5 6 13 41 3 | monfval | |- ( ph -> ( Mono ` C ) = ( a e. ( Base ` C ) , b e. ( Base ` C ) |-> { f e. ( a ( Hom ` C ) b ) | A. c e. ( Base ` C ) Fun `' ( g e. ( c ( Hom ` C ) a ) |-> ( f ( <. c , a >. ( comp ` C ) b ) g ) ) } ) ) |
| 43 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 44 | eqid | |- ( Mono ` D ) = ( Mono ` D ) |
|
| 45 | 43 7 14 44 4 | monfval | |- ( ph -> ( Mono ` D ) = ( a e. ( Base ` D ) , b e. ( Base ` D ) |-> { f e. ( a ( Hom ` D ) b ) | A. c e. ( Base ` D ) Fun `' ( g e. ( c ( Hom ` D ) a ) |-> ( f ( <. c , a >. ( comp ` D ) b ) g ) ) } ) ) |
| 46 | 40 42 45 | 3eqtr4d | |- ( ph -> ( Mono ` C ) = ( Mono ` D ) ) |