This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a nonnegative integer is less than twice a positive integer, the nonnegative integer modulo the positive integer equals the nonnegative integer or the nonnegative integer minus the positive integer. (Contributed by Alexander van der Vekens, 21-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modifeq2int | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) → ( 𝐴 mod 𝐵 ) = if ( 𝐴 < 𝐵 , 𝐴 , ( 𝐴 − 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) | |
| 2 | nnrp | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ+ ) | |
| 3 | 1 2 | anim12i | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ) |
| 4 | 3 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ) |
| 5 | nn0ge0 | ⊢ ( 𝐴 ∈ ℕ0 → 0 ≤ 𝐴 ) | |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) → 0 ≤ 𝐴 ) |
| 7 | 6 | anim1i | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) ∧ 𝐴 < 𝐵 ) → ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) |
| 8 | 7 | ancoms | ⊢ ( ( 𝐴 < 𝐵 ∧ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) ) → ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) |
| 9 | modid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 mod 𝐵 ) = 𝐴 ) | |
| 10 | 4 8 9 | syl2an2 | ⊢ ( ( 𝐴 < 𝐵 ∧ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) ) → ( 𝐴 mod 𝐵 ) = 𝐴 ) |
| 11 | iftrue | ⊢ ( 𝐴 < 𝐵 → if ( 𝐴 < 𝐵 , 𝐴 , ( 𝐴 − 𝐵 ) ) = 𝐴 ) | |
| 12 | 11 | eqcomd | ⊢ ( 𝐴 < 𝐵 → 𝐴 = if ( 𝐴 < 𝐵 , 𝐴 , ( 𝐴 − 𝐵 ) ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐴 < 𝐵 ∧ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) ) → 𝐴 = if ( 𝐴 < 𝐵 , 𝐴 , ( 𝐴 − 𝐵 ) ) ) |
| 14 | 10 13 | eqtrd | ⊢ ( ( 𝐴 < 𝐵 ∧ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) ) → ( 𝐴 mod 𝐵 ) = if ( 𝐴 < 𝐵 , 𝐴 , ( 𝐴 − 𝐵 ) ) ) |
| 15 | 14 | ex | ⊢ ( 𝐴 < 𝐵 → ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) → ( 𝐴 mod 𝐵 ) = if ( 𝐴 < 𝐵 , 𝐴 , ( 𝐴 − 𝐵 ) ) ) ) |
| 16 | 4 | adantr | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) ∧ ¬ 𝐴 < 𝐵 ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ) |
| 17 | nnre | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) | |
| 18 | lenlt | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) | |
| 19 | 17 1 18 | syl2anr | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) |
| 20 | 19 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) |
| 21 | 20 | biimpar | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) ∧ ¬ 𝐴 < 𝐵 ) → 𝐵 ≤ 𝐴 ) |
| 22 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) ∧ ¬ 𝐴 < 𝐵 ) → 𝐴 < ( 2 · 𝐵 ) ) | |
| 23 | 2submod | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝐵 ≤ 𝐴 ∧ 𝐴 < ( 2 · 𝐵 ) ) ) → ( 𝐴 mod 𝐵 ) = ( 𝐴 − 𝐵 ) ) | |
| 24 | 16 21 22 23 | syl12anc | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) ∧ ¬ 𝐴 < 𝐵 ) → ( 𝐴 mod 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| 25 | iffalse | ⊢ ( ¬ 𝐴 < 𝐵 → if ( 𝐴 < 𝐵 , 𝐴 , ( 𝐴 − 𝐵 ) ) = ( 𝐴 − 𝐵 ) ) | |
| 26 | 25 | adantl | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) ∧ ¬ 𝐴 < 𝐵 ) → if ( 𝐴 < 𝐵 , 𝐴 , ( 𝐴 − 𝐵 ) ) = ( 𝐴 − 𝐵 ) ) |
| 27 | 26 | eqcomd | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) ∧ ¬ 𝐴 < 𝐵 ) → ( 𝐴 − 𝐵 ) = if ( 𝐴 < 𝐵 , 𝐴 , ( 𝐴 − 𝐵 ) ) ) |
| 28 | 24 27 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) ∧ ¬ 𝐴 < 𝐵 ) → ( 𝐴 mod 𝐵 ) = if ( 𝐴 < 𝐵 , 𝐴 , ( 𝐴 − 𝐵 ) ) ) |
| 29 | 28 | expcom | ⊢ ( ¬ 𝐴 < 𝐵 → ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) → ( 𝐴 mod 𝐵 ) = if ( 𝐴 < 𝐵 , 𝐴 , ( 𝐴 − 𝐵 ) ) ) ) |
| 30 | 15 29 | pm2.61i | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < ( 2 · 𝐵 ) ) → ( 𝐴 mod 𝐵 ) = if ( 𝐴 < 𝐵 , 𝐴 , ( 𝐴 − 𝐵 ) ) ) |