This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a nonnegative integer is less than twice a positive integer, the nonnegative integer modulo the positive integer equals the nonnegative integer or the nonnegative integer minus the positive integer. (Contributed by Alexander van der Vekens, 21-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modifeq2int | |- ( ( A e. NN0 /\ B e. NN /\ A < ( 2 x. B ) ) -> ( A mod B ) = if ( A < B , A , ( A - B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re | |- ( A e. NN0 -> A e. RR ) |
|
| 2 | nnrp | |- ( B e. NN -> B e. RR+ ) |
|
| 3 | 1 2 | anim12i | |- ( ( A e. NN0 /\ B e. NN ) -> ( A e. RR /\ B e. RR+ ) ) |
| 4 | 3 | 3adant3 | |- ( ( A e. NN0 /\ B e. NN /\ A < ( 2 x. B ) ) -> ( A e. RR /\ B e. RR+ ) ) |
| 5 | nn0ge0 | |- ( A e. NN0 -> 0 <_ A ) |
|
| 6 | 5 | 3ad2ant1 | |- ( ( A e. NN0 /\ B e. NN /\ A < ( 2 x. B ) ) -> 0 <_ A ) |
| 7 | 6 | anim1i | |- ( ( ( A e. NN0 /\ B e. NN /\ A < ( 2 x. B ) ) /\ A < B ) -> ( 0 <_ A /\ A < B ) ) |
| 8 | 7 | ancoms | |- ( ( A < B /\ ( A e. NN0 /\ B e. NN /\ A < ( 2 x. B ) ) ) -> ( 0 <_ A /\ A < B ) ) |
| 9 | modid | |- ( ( ( A e. RR /\ B e. RR+ ) /\ ( 0 <_ A /\ A < B ) ) -> ( A mod B ) = A ) |
|
| 10 | 4 8 9 | syl2an2 | |- ( ( A < B /\ ( A e. NN0 /\ B e. NN /\ A < ( 2 x. B ) ) ) -> ( A mod B ) = A ) |
| 11 | iftrue | |- ( A < B -> if ( A < B , A , ( A - B ) ) = A ) |
|
| 12 | 11 | eqcomd | |- ( A < B -> A = if ( A < B , A , ( A - B ) ) ) |
| 13 | 12 | adantr | |- ( ( A < B /\ ( A e. NN0 /\ B e. NN /\ A < ( 2 x. B ) ) ) -> A = if ( A < B , A , ( A - B ) ) ) |
| 14 | 10 13 | eqtrd | |- ( ( A < B /\ ( A e. NN0 /\ B e. NN /\ A < ( 2 x. B ) ) ) -> ( A mod B ) = if ( A < B , A , ( A - B ) ) ) |
| 15 | 14 | ex | |- ( A < B -> ( ( A e. NN0 /\ B e. NN /\ A < ( 2 x. B ) ) -> ( A mod B ) = if ( A < B , A , ( A - B ) ) ) ) |
| 16 | 4 | adantr | |- ( ( ( A e. NN0 /\ B e. NN /\ A < ( 2 x. B ) ) /\ -. A < B ) -> ( A e. RR /\ B e. RR+ ) ) |
| 17 | nnre | |- ( B e. NN -> B e. RR ) |
|
| 18 | lenlt | |- ( ( B e. RR /\ A e. RR ) -> ( B <_ A <-> -. A < B ) ) |
|
| 19 | 17 1 18 | syl2anr | |- ( ( A e. NN0 /\ B e. NN ) -> ( B <_ A <-> -. A < B ) ) |
| 20 | 19 | 3adant3 | |- ( ( A e. NN0 /\ B e. NN /\ A < ( 2 x. B ) ) -> ( B <_ A <-> -. A < B ) ) |
| 21 | 20 | biimpar | |- ( ( ( A e. NN0 /\ B e. NN /\ A < ( 2 x. B ) ) /\ -. A < B ) -> B <_ A ) |
| 22 | simpl3 | |- ( ( ( A e. NN0 /\ B e. NN /\ A < ( 2 x. B ) ) /\ -. A < B ) -> A < ( 2 x. B ) ) |
|
| 23 | 2submod | |- ( ( ( A e. RR /\ B e. RR+ ) /\ ( B <_ A /\ A < ( 2 x. B ) ) ) -> ( A mod B ) = ( A - B ) ) |
|
| 24 | 16 21 22 23 | syl12anc | |- ( ( ( A e. NN0 /\ B e. NN /\ A < ( 2 x. B ) ) /\ -. A < B ) -> ( A mod B ) = ( A - B ) ) |
| 25 | iffalse | |- ( -. A < B -> if ( A < B , A , ( A - B ) ) = ( A - B ) ) |
|
| 26 | 25 | adantl | |- ( ( ( A e. NN0 /\ B e. NN /\ A < ( 2 x. B ) ) /\ -. A < B ) -> if ( A < B , A , ( A - B ) ) = ( A - B ) ) |
| 27 | 26 | eqcomd | |- ( ( ( A e. NN0 /\ B e. NN /\ A < ( 2 x. B ) ) /\ -. A < B ) -> ( A - B ) = if ( A < B , A , ( A - B ) ) ) |
| 28 | 24 27 | eqtrd | |- ( ( ( A e. NN0 /\ B e. NN /\ A < ( 2 x. B ) ) /\ -. A < B ) -> ( A mod B ) = if ( A < B , A , ( A - B ) ) ) |
| 29 | 28 | expcom | |- ( -. A < B -> ( ( A e. NN0 /\ B e. NN /\ A < ( 2 x. B ) ) -> ( A mod B ) = if ( A < B , A , ( A - B ) ) ) ) |
| 30 | 15 29 | pm2.61i | |- ( ( A e. NN0 /\ B e. NN /\ A < ( 2 x. B ) ) -> ( A mod B ) = if ( A < B , A , ( A - B ) ) ) |