This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The gcd remains unchanged if one operand is replaced with its remainder modulo the other. (Contributed by Paul Chapman, 31-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modgcd | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( M mod N ) gcd N ) = ( M gcd N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 2 | nnrp | |- ( N e. NN -> N e. RR+ ) |
|
| 3 | modval | |- ( ( M e. RR /\ N e. RR+ ) -> ( M mod N ) = ( M - ( N x. ( |_ ` ( M / N ) ) ) ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( M e. ZZ /\ N e. NN ) -> ( M mod N ) = ( M - ( N x. ( |_ ` ( M / N ) ) ) ) ) |
| 5 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 6 | 5 | adantr | |- ( ( M e. ZZ /\ N e. NN ) -> M e. CC ) |
| 7 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 8 | 7 | adantl | |- ( ( M e. ZZ /\ N e. NN ) -> N e. CC ) |
| 9 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 10 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
| 11 | redivcl | |- ( ( M e. RR /\ N e. RR /\ N =/= 0 ) -> ( M / N ) e. RR ) |
|
| 12 | 1 9 10 11 | syl3an | |- ( ( M e. ZZ /\ N e. NN /\ N e. NN ) -> ( M / N ) e. RR ) |
| 13 | 12 | 3anidm23 | |- ( ( M e. ZZ /\ N e. NN ) -> ( M / N ) e. RR ) |
| 14 | 13 | flcld | |- ( ( M e. ZZ /\ N e. NN ) -> ( |_ ` ( M / N ) ) e. ZZ ) |
| 15 | 14 | zcnd | |- ( ( M e. ZZ /\ N e. NN ) -> ( |_ ` ( M / N ) ) e. CC ) |
| 16 | mulneg1 | |- ( ( ( |_ ` ( M / N ) ) e. CC /\ N e. CC ) -> ( -u ( |_ ` ( M / N ) ) x. N ) = -u ( ( |_ ` ( M / N ) ) x. N ) ) |
|
| 17 | mulcom | |- ( ( ( |_ ` ( M / N ) ) e. CC /\ N e. CC ) -> ( ( |_ ` ( M / N ) ) x. N ) = ( N x. ( |_ ` ( M / N ) ) ) ) |
|
| 18 | 17 | negeqd | |- ( ( ( |_ ` ( M / N ) ) e. CC /\ N e. CC ) -> -u ( ( |_ ` ( M / N ) ) x. N ) = -u ( N x. ( |_ ` ( M / N ) ) ) ) |
| 19 | 16 18 | eqtrd | |- ( ( ( |_ ` ( M / N ) ) e. CC /\ N e. CC ) -> ( -u ( |_ ` ( M / N ) ) x. N ) = -u ( N x. ( |_ ` ( M / N ) ) ) ) |
| 20 | 19 | ancoms | |- ( ( N e. CC /\ ( |_ ` ( M / N ) ) e. CC ) -> ( -u ( |_ ` ( M / N ) ) x. N ) = -u ( N x. ( |_ ` ( M / N ) ) ) ) |
| 21 | 20 | 3adant1 | |- ( ( M e. CC /\ N e. CC /\ ( |_ ` ( M / N ) ) e. CC ) -> ( -u ( |_ ` ( M / N ) ) x. N ) = -u ( N x. ( |_ ` ( M / N ) ) ) ) |
| 22 | 21 | oveq2d | |- ( ( M e. CC /\ N e. CC /\ ( |_ ` ( M / N ) ) e. CC ) -> ( M + ( -u ( |_ ` ( M / N ) ) x. N ) ) = ( M + -u ( N x. ( |_ ` ( M / N ) ) ) ) ) |
| 23 | mulcl | |- ( ( N e. CC /\ ( |_ ` ( M / N ) ) e. CC ) -> ( N x. ( |_ ` ( M / N ) ) ) e. CC ) |
|
| 24 | negsub | |- ( ( M e. CC /\ ( N x. ( |_ ` ( M / N ) ) ) e. CC ) -> ( M + -u ( N x. ( |_ ` ( M / N ) ) ) ) = ( M - ( N x. ( |_ ` ( M / N ) ) ) ) ) |
|
| 25 | 23 24 | sylan2 | |- ( ( M e. CC /\ ( N e. CC /\ ( |_ ` ( M / N ) ) e. CC ) ) -> ( M + -u ( N x. ( |_ ` ( M / N ) ) ) ) = ( M - ( N x. ( |_ ` ( M / N ) ) ) ) ) |
| 26 | 25 | 3impb | |- ( ( M e. CC /\ N e. CC /\ ( |_ ` ( M / N ) ) e. CC ) -> ( M + -u ( N x. ( |_ ` ( M / N ) ) ) ) = ( M - ( N x. ( |_ ` ( M / N ) ) ) ) ) |
| 27 | 22 26 | eqtrd | |- ( ( M e. CC /\ N e. CC /\ ( |_ ` ( M / N ) ) e. CC ) -> ( M + ( -u ( |_ ` ( M / N ) ) x. N ) ) = ( M - ( N x. ( |_ ` ( M / N ) ) ) ) ) |
| 28 | 6 8 15 27 | syl3anc | |- ( ( M e. ZZ /\ N e. NN ) -> ( M + ( -u ( |_ ` ( M / N ) ) x. N ) ) = ( M - ( N x. ( |_ ` ( M / N ) ) ) ) ) |
| 29 | 4 28 | eqtr4d | |- ( ( M e. ZZ /\ N e. NN ) -> ( M mod N ) = ( M + ( -u ( |_ ` ( M / N ) ) x. N ) ) ) |
| 30 | 29 | oveq2d | |- ( ( M e. ZZ /\ N e. NN ) -> ( N gcd ( M mod N ) ) = ( N gcd ( M + ( -u ( |_ ` ( M / N ) ) x. N ) ) ) ) |
| 31 | 14 | znegcld | |- ( ( M e. ZZ /\ N e. NN ) -> -u ( |_ ` ( M / N ) ) e. ZZ ) |
| 32 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 33 | 32 | adantl | |- ( ( M e. ZZ /\ N e. NN ) -> N e. ZZ ) |
| 34 | simpl | |- ( ( M e. ZZ /\ N e. NN ) -> M e. ZZ ) |
|
| 35 | gcdaddm | |- ( ( -u ( |_ ` ( M / N ) ) e. ZZ /\ N e. ZZ /\ M e. ZZ ) -> ( N gcd M ) = ( N gcd ( M + ( -u ( |_ ` ( M / N ) ) x. N ) ) ) ) |
|
| 36 | 31 33 34 35 | syl3anc | |- ( ( M e. ZZ /\ N e. NN ) -> ( N gcd M ) = ( N gcd ( M + ( -u ( |_ ` ( M / N ) ) x. N ) ) ) ) |
| 37 | 30 36 | eqtr4d | |- ( ( M e. ZZ /\ N e. NN ) -> ( N gcd ( M mod N ) ) = ( N gcd M ) ) |
| 38 | zmodcl | |- ( ( M e. ZZ /\ N e. NN ) -> ( M mod N ) e. NN0 ) |
|
| 39 | 38 | nn0zd | |- ( ( M e. ZZ /\ N e. NN ) -> ( M mod N ) e. ZZ ) |
| 40 | 33 39 | gcdcomd | |- ( ( M e. ZZ /\ N e. NN ) -> ( N gcd ( M mod N ) ) = ( ( M mod N ) gcd N ) ) |
| 41 | 33 34 | gcdcomd | |- ( ( M e. ZZ /\ N e. NN ) -> ( N gcd M ) = ( M gcd N ) ) |
| 42 | 37 40 41 | 3eqtr3d | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( M mod N ) gcd N ) = ( M gcd N ) ) |