This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A surjective monoid morphism preserves identity element. (Contributed by Thierry Arnoux, 25-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmgrp.f | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) | |
| ghmgrp.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| ghmgrp.y | ⊢ 𝑌 = ( Base ‘ 𝐻 ) | ||
| ghmgrp.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| ghmgrp.q | ⊢ ⨣ = ( +g ‘ 𝐻 ) | ||
| ghmgrp.1 | ⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ 𝑌 ) | ||
| mhmmnd.3 | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| mhmid.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | mhmid | ⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmgrp.f | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 2 | ghmgrp.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 3 | ghmgrp.y | ⊢ 𝑌 = ( Base ‘ 𝐻 ) | |
| 4 | ghmgrp.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 5 | ghmgrp.q | ⊢ ⨣ = ( +g ‘ 𝐻 ) | |
| 6 | ghmgrp.1 | ⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ 𝑌 ) | |
| 7 | mhmmnd.3 | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 8 | mhmid.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 9 | eqid | ⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) | |
| 10 | fof | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 11 | 6 10 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 12 | 2 8 | mndidcl | ⊢ ( 𝐺 ∈ Mnd → 0 ∈ 𝑋 ) |
| 13 | 7 12 | syl | ⊢ ( 𝜑 → 0 ∈ 𝑋 ) |
| 14 | 11 13 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ∈ 𝑌 ) |
| 15 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → 𝜑 ) | |
| 16 | 15 1 | syl3an1 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
| 17 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → 𝐺 ∈ Mnd ) |
| 18 | 17 12 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → 0 ∈ 𝑋 ) |
| 19 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → 𝑖 ∈ 𝑋 ) | |
| 20 | 16 18 19 | mhmlem | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( 0 + 𝑖 ) ) = ( ( 𝐹 ‘ 0 ) ⨣ ( 𝐹 ‘ 𝑖 ) ) ) |
| 21 | 2 4 8 | mndlid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑖 ∈ 𝑋 ) → ( 0 + 𝑖 ) = 𝑖 ) |
| 22 | 17 19 21 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 0 + 𝑖 ) = 𝑖 ) |
| 23 | 22 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( 0 + 𝑖 ) ) = ( 𝐹 ‘ 𝑖 ) ) |
| 24 | 20 23 | eqtr3d | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 𝐹 ‘ 0 ) ⨣ ( 𝐹 ‘ 𝑖 ) ) = ( 𝐹 ‘ 𝑖 ) ) |
| 25 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ 𝑖 ) = 𝑎 ) | |
| 26 | 25 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 𝐹 ‘ 0 ) ⨣ ( 𝐹 ‘ 𝑖 ) ) = ( ( 𝐹 ‘ 0 ) ⨣ 𝑎 ) ) |
| 27 | 24 26 25 | 3eqtr3d | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 𝐹 ‘ 0 ) ⨣ 𝑎 ) = 𝑎 ) |
| 28 | foelcdmi | ⊢ ( ( 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝑎 ∈ 𝑌 ) → ∃ 𝑖 ∈ 𝑋 ( 𝐹 ‘ 𝑖 ) = 𝑎 ) | |
| 29 | 6 28 | sylan | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) → ∃ 𝑖 ∈ 𝑋 ( 𝐹 ‘ 𝑖 ) = 𝑎 ) |
| 30 | 27 29 | r19.29a | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) → ( ( 𝐹 ‘ 0 ) ⨣ 𝑎 ) = 𝑎 ) |
| 31 | 16 19 18 | mhmlem | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( 𝑖 + 0 ) ) = ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ 0 ) ) ) |
| 32 | 2 4 8 | mndrid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑖 ∈ 𝑋 ) → ( 𝑖 + 0 ) = 𝑖 ) |
| 33 | 17 19 32 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝑖 + 0 ) = 𝑖 ) |
| 34 | 33 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( 𝑖 + 0 ) ) = ( 𝐹 ‘ 𝑖 ) ) |
| 35 | 31 34 | eqtr3d | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ 0 ) ) = ( 𝐹 ‘ 𝑖 ) ) |
| 36 | 25 | oveq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ 0 ) ) = ( 𝑎 ⨣ ( 𝐹 ‘ 0 ) ) ) |
| 37 | 35 36 25 | 3eqtr3d | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝑎 ⨣ ( 𝐹 ‘ 0 ) ) = 𝑎 ) |
| 38 | 37 29 | r19.29a | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) → ( 𝑎 ⨣ ( 𝐹 ‘ 0 ) ) = 𝑎 ) |
| 39 | 3 9 5 14 30 38 | ismgmid2 | ⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝐻 ) ) |