This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A surjective monoid morphism preserves identity element. (Contributed by Thierry Arnoux, 25-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmgrp.f | |- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
|
| ghmgrp.x | |- X = ( Base ` G ) |
||
| ghmgrp.y | |- Y = ( Base ` H ) |
||
| ghmgrp.p | |- .+ = ( +g ` G ) |
||
| ghmgrp.q | |- .+^ = ( +g ` H ) |
||
| ghmgrp.1 | |- ( ph -> F : X -onto-> Y ) |
||
| mhmmnd.3 | |- ( ph -> G e. Mnd ) |
||
| mhmid.0 | |- .0. = ( 0g ` G ) |
||
| Assertion | mhmid | |- ( ph -> ( F ` .0. ) = ( 0g ` H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmgrp.f | |- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
|
| 2 | ghmgrp.x | |- X = ( Base ` G ) |
|
| 3 | ghmgrp.y | |- Y = ( Base ` H ) |
|
| 4 | ghmgrp.p | |- .+ = ( +g ` G ) |
|
| 5 | ghmgrp.q | |- .+^ = ( +g ` H ) |
|
| 6 | ghmgrp.1 | |- ( ph -> F : X -onto-> Y ) |
|
| 7 | mhmmnd.3 | |- ( ph -> G e. Mnd ) |
|
| 8 | mhmid.0 | |- .0. = ( 0g ` G ) |
|
| 9 | eqid | |- ( 0g ` H ) = ( 0g ` H ) |
|
| 10 | fof | |- ( F : X -onto-> Y -> F : X --> Y ) |
|
| 11 | 6 10 | syl | |- ( ph -> F : X --> Y ) |
| 12 | 2 8 | mndidcl | |- ( G e. Mnd -> .0. e. X ) |
| 13 | 7 12 | syl | |- ( ph -> .0. e. X ) |
| 14 | 11 13 | ffvelcdmd | |- ( ph -> ( F ` .0. ) e. Y ) |
| 15 | simplll | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ph ) |
|
| 16 | 15 1 | syl3an1 | |- ( ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
| 17 | 7 | ad3antrrr | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> G e. Mnd ) |
| 18 | 17 12 | syl | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> .0. e. X ) |
| 19 | simplr | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> i e. X ) |
|
| 20 | 16 18 19 | mhmlem | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( F ` ( .0. .+ i ) ) = ( ( F ` .0. ) .+^ ( F ` i ) ) ) |
| 21 | 2 4 8 | mndlid | |- ( ( G e. Mnd /\ i e. X ) -> ( .0. .+ i ) = i ) |
| 22 | 17 19 21 | syl2anc | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( .0. .+ i ) = i ) |
| 23 | 22 | fveq2d | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( F ` ( .0. .+ i ) ) = ( F ` i ) ) |
| 24 | 20 23 | eqtr3d | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( ( F ` .0. ) .+^ ( F ` i ) ) = ( F ` i ) ) |
| 25 | simpr | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( F ` i ) = a ) |
|
| 26 | 25 | oveq2d | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( ( F ` .0. ) .+^ ( F ` i ) ) = ( ( F ` .0. ) .+^ a ) ) |
| 27 | 24 26 25 | 3eqtr3d | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( ( F ` .0. ) .+^ a ) = a ) |
| 28 | foelcdmi | |- ( ( F : X -onto-> Y /\ a e. Y ) -> E. i e. X ( F ` i ) = a ) |
|
| 29 | 6 28 | sylan | |- ( ( ph /\ a e. Y ) -> E. i e. X ( F ` i ) = a ) |
| 30 | 27 29 | r19.29a | |- ( ( ph /\ a e. Y ) -> ( ( F ` .0. ) .+^ a ) = a ) |
| 31 | 16 19 18 | mhmlem | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( F ` ( i .+ .0. ) ) = ( ( F ` i ) .+^ ( F ` .0. ) ) ) |
| 32 | 2 4 8 | mndrid | |- ( ( G e. Mnd /\ i e. X ) -> ( i .+ .0. ) = i ) |
| 33 | 17 19 32 | syl2anc | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( i .+ .0. ) = i ) |
| 34 | 33 | fveq2d | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( F ` ( i .+ .0. ) ) = ( F ` i ) ) |
| 35 | 31 34 | eqtr3d | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( ( F ` i ) .+^ ( F ` .0. ) ) = ( F ` i ) ) |
| 36 | 25 | oveq1d | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( ( F ` i ) .+^ ( F ` .0. ) ) = ( a .+^ ( F ` .0. ) ) ) |
| 37 | 35 36 25 | 3eqtr3d | |- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( a .+^ ( F ` .0. ) ) = a ) |
| 38 | 37 29 | r19.29a | |- ( ( ph /\ a e. Y ) -> ( a .+^ ( F ` .0. ) ) = a ) |
| 39 | 3 9 5 14 30 38 | ismgmid2 | |- ( ph -> ( F ` .0. ) = ( 0g ` H ) ) |