This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of a monoid homomorphism and a power series is a power series. (Contributed by SN, 18-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mhmcopsr.p | ||
| mhmcopsr.q | |||
| mhmcopsr.b | |||
| mhmcopsr.c | |||
| mhmcopsr.h | |||
| mhmcopsr.f | |||
| Assertion | mhmcopsr |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmcopsr.p | ||
| 2 | mhmcopsr.q | ||
| 3 | mhmcopsr.b | ||
| 4 | mhmcopsr.c | ||
| 5 | mhmcopsr.h | ||
| 6 | mhmcopsr.f | ||
| 7 | fvexd | ||
| 8 | ovex | ||
| 9 | 8 | rabex | |
| 10 | 9 | a1i | |
| 11 | eqid | ||
| 12 | eqid | ||
| 13 | 11 12 | mhmf | |
| 14 | 5 13 | syl | |
| 15 | eqid | ||
| 16 | 1 11 15 3 6 | psrelbas | |
| 17 | 14 16 | fcod | |
| 18 | 7 10 17 | elmapdd | |
| 19 | reldmpsr | ||
| 20 | 19 1 3 | elbasov | |
| 21 | 6 20 | syl | |
| 22 | 21 | simpld | |
| 23 | 2 12 15 4 22 | psrbas | |
| 24 | 18 23 | eleqtrrd |