This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that the ring homomorphism in rhmpsr preserves addition. (Contributed by SN, 18-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mhmcoaddpsr.p | ||
| mhmcoaddpsr.q | |||
| mhmcoaddpsr.b | |||
| mhmcoaddpsr.c | |||
| mhmcoaddpsr.1 | |||
| mhmcoaddpsr.2 | |||
| mhmcoaddpsr.h | |||
| mhmcoaddpsr.f | |||
| mhmcoaddpsr.g | |||
| Assertion | mhmcoaddpsr |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmcoaddpsr.p | ||
| 2 | mhmcoaddpsr.q | ||
| 3 | mhmcoaddpsr.b | ||
| 4 | mhmcoaddpsr.c | ||
| 5 | mhmcoaddpsr.1 | ||
| 6 | mhmcoaddpsr.2 | ||
| 7 | mhmcoaddpsr.h | ||
| 8 | mhmcoaddpsr.f | ||
| 9 | mhmcoaddpsr.g | ||
| 10 | fvexd | ||
| 11 | ovex | ||
| 12 | 11 | rabex | |
| 13 | 12 | a1i | |
| 14 | eqid | ||
| 15 | eqid | ||
| 16 | 1 14 15 3 8 | psrelbas | |
| 17 | 10 13 16 | elmapdd | |
| 18 | 1 14 15 3 9 | psrelbas | |
| 19 | 10 13 18 | elmapdd | |
| 20 | eqid | ||
| 21 | eqid | ||
| 22 | 14 20 21 | mhmvlin | |
| 23 | 7 17 19 22 | syl3anc | |
| 24 | 1 3 20 5 8 9 | psradd | |
| 25 | 24 | coeq2d | |
| 26 | 1 2 3 4 7 8 | mhmcopsr | |
| 27 | 1 2 3 4 7 9 | mhmcopsr | |
| 28 | 2 4 21 6 26 27 | psradd | |
| 29 | 23 25 28 | 3eqtr4d |