This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Tuple extension of monoid homomorphisms. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mhmvlin.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| mhmvlin.p | ⊢ + = ( +g ‘ 𝑀 ) | ||
| mhmvlin.q | ⊢ ⨣ = ( +g ‘ 𝑁 ) | ||
| Assertion | mhmvlin | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝐹 ∘ ( 𝑋 ∘f + 𝑌 ) ) = ( ( 𝐹 ∘ 𝑋 ) ∘f ⨣ ( 𝐹 ∘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmvlin.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | mhmvlin.p | ⊢ + = ( +g ‘ 𝑀 ) | |
| 3 | mhmvlin.q | ⊢ ⨣ = ( +g ‘ 𝑁 ) | |
| 4 | simpl1 | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ) | |
| 5 | elmapi | ⊢ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) → 𝑋 : 𝐼 ⟶ 𝐵 ) | |
| 6 | 5 | 3ad2ant2 | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝑋 : 𝐼 ⟶ 𝐵 ) |
| 7 | 6 | ffvelcdmda | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑦 ) ∈ 𝐵 ) |
| 8 | elmapi | ⊢ ( 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) → 𝑌 : 𝐼 ⟶ 𝐵 ) | |
| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝑌 : 𝐼 ⟶ 𝐵 ) |
| 10 | 9 | ffvelcdmda | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑌 ‘ 𝑦 ) ∈ 𝐵 ) |
| 11 | 1 2 3 | mhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ ( 𝑋 ‘ 𝑦 ) ∈ 𝐵 ∧ ( 𝑌 ‘ 𝑦 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( ( 𝑋 ‘ 𝑦 ) + ( 𝑌 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ ( 𝑋 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ ( 𝑌 ‘ 𝑦 ) ) ) ) |
| 12 | 4 7 10 11 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝐹 ‘ ( ( 𝑋 ‘ 𝑦 ) + ( 𝑌 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ ( 𝑋 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ ( 𝑌 ‘ 𝑦 ) ) ) ) |
| 13 | 12 | mpteq2dva | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝑦 ∈ 𝐼 ↦ ( 𝐹 ‘ ( ( 𝑋 ‘ 𝑦 ) + ( 𝑌 ‘ 𝑦 ) ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( ( 𝐹 ‘ ( 𝑋 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ ( 𝑌 ‘ 𝑦 ) ) ) ) ) |
| 14 | mhmrcl1 | ⊢ ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) → 𝑀 ∈ Mnd ) | |
| 15 | 14 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑦 ∈ 𝐼 ) → 𝑀 ∈ Mnd ) |
| 16 | 15 | 3ad2antl1 | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑀 ∈ Mnd ) |
| 17 | 1 2 | mndcl | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑋 ‘ 𝑦 ) ∈ 𝐵 ∧ ( 𝑌 ‘ 𝑦 ) ∈ 𝐵 ) → ( ( 𝑋 ‘ 𝑦 ) + ( 𝑌 ‘ 𝑦 ) ) ∈ 𝐵 ) |
| 18 | 16 7 10 17 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑦 ) + ( 𝑌 ‘ 𝑦 ) ) ∈ 𝐵 ) |
| 19 | elmapex | ⊢ ( 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) → ( 𝐵 ∈ V ∧ 𝐼 ∈ V ) ) | |
| 20 | 19 | simprd | ⊢ ( 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) → 𝐼 ∈ V ) |
| 21 | 20 | 3ad2ant3 | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝐼 ∈ V ) |
| 22 | 6 | feqmptd | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝑋 = ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) ) |
| 23 | 9 | feqmptd | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝑌 = ( 𝑦 ∈ 𝐼 ↦ ( 𝑌 ‘ 𝑦 ) ) ) |
| 24 | 21 7 10 22 23 | offval2 | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝑋 ∘f + 𝑌 ) = ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑦 ) + ( 𝑌 ‘ 𝑦 ) ) ) ) |
| 25 | eqid | ⊢ ( Base ‘ 𝑁 ) = ( Base ‘ 𝑁 ) | |
| 26 | 1 25 | mhmf | ⊢ ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑁 ) ) |
| 27 | 26 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑁 ) ) |
| 28 | 27 | feqmptd | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝐹 = ( 𝑧 ∈ 𝐵 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 29 | fveq2 | ⊢ ( 𝑧 = ( ( 𝑋 ‘ 𝑦 ) + ( 𝑌 ‘ 𝑦 ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( ( 𝑋 ‘ 𝑦 ) + ( 𝑌 ‘ 𝑦 ) ) ) ) | |
| 30 | 18 24 28 29 | fmptco | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝐹 ∘ ( 𝑋 ∘f + 𝑌 ) ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝐹 ‘ ( ( 𝑋 ‘ 𝑦 ) + ( 𝑌 ‘ 𝑦 ) ) ) ) ) |
| 31 | fvexd | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝐹 ‘ ( 𝑋 ‘ 𝑦 ) ) ∈ V ) | |
| 32 | fvexd | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝐹 ‘ ( 𝑌 ‘ 𝑦 ) ) ∈ V ) | |
| 33 | fcompt | ⊢ ( ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑁 ) ∧ 𝑋 : 𝐼 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝑋 ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝐹 ‘ ( 𝑋 ‘ 𝑦 ) ) ) ) | |
| 34 | 27 6 33 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝐹 ∘ 𝑋 ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝐹 ‘ ( 𝑋 ‘ 𝑦 ) ) ) ) |
| 35 | fcompt | ⊢ ( ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑁 ) ∧ 𝑌 : 𝐼 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝑌 ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝐹 ‘ ( 𝑌 ‘ 𝑦 ) ) ) ) | |
| 36 | 27 9 35 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝐹 ∘ 𝑌 ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝐹 ‘ ( 𝑌 ‘ 𝑦 ) ) ) ) |
| 37 | 21 31 32 34 36 | offval2 | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( ( 𝐹 ∘ 𝑋 ) ∘f ⨣ ( 𝐹 ∘ 𝑌 ) ) = ( 𝑦 ∈ 𝐼 ↦ ( ( 𝐹 ‘ ( 𝑋 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ ( 𝑌 ‘ 𝑦 ) ) ) ) ) |
| 38 | 13 30 37 | 3eqtr4d | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝐹 ∘ ( 𝑋 ∘f + 𝑌 ) ) = ( ( 𝐹 ∘ 𝑋 ) ∘f ⨣ ( 𝐹 ∘ 𝑌 ) ) ) |