This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A magma homomorphism is bijective iff its converse is also a magma homomorphism. (Contributed by AV, 25-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mgmhmf1o.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| mgmhmf1o.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| Assertion | mgmhmf1o | ⊢ ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) → ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ ◡ 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgmhmf1o.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | mgmhmf1o.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 3 | mgmhmrcl | ⊢ ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) → ( 𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm ) ) | |
| 4 | 3 | ancomd | ⊢ ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) → ( 𝑆 ∈ Mgm ∧ 𝑅 ∈ Mgm ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( 𝑆 ∈ Mgm ∧ 𝑅 ∈ Mgm ) ) |
| 6 | f1ocnv | ⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 → ◡ 𝐹 : 𝐶 –1-1-onto→ 𝐵 ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ◡ 𝐹 : 𝐶 –1-1-onto→ 𝐵 ) |
| 8 | f1of | ⊢ ( ◡ 𝐹 : 𝐶 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) |
| 10 | simpll | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ) | |
| 11 | 9 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) |
| 12 | simprl | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑥 ∈ 𝐶 ) | |
| 13 | 11 12 | ffvelcdmd | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 14 | simprr | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑦 ∈ 𝐶 ) | |
| 15 | 11 14 | ffvelcdmd | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
| 16 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 17 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 18 | 1 16 17 | mgmhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) |
| 19 | 10 13 15 18 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) |
| 20 | simplr | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) | |
| 21 | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ∧ 𝑥 ∈ 𝐶 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) | |
| 22 | 20 12 21 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
| 23 | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) = 𝑦 ) | |
| 24 | 20 14 23 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) = 𝑦 ) |
| 25 | 22 24 | oveq12d | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) |
| 26 | 19 25 | eqtrd | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) |
| 27 | 3 | simpld | ⊢ ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) → 𝑅 ∈ Mgm ) |
| 28 | 27 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → 𝑅 ∈ Mgm ) |
| 29 | 28 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑅 ∈ Mgm ) |
| 30 | 1 16 | mgmcl | ⊢ ( ( 𝑅 ∈ Mgm ∧ ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ∈ 𝐵 ) |
| 31 | 29 13 15 30 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ∈ 𝐵 ) |
| 32 | f1ocnvfv | ⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ∈ 𝐵 ) → ( ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) → ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) | |
| 33 | 20 31 32 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) → ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) |
| 34 | 26 33 | mpd | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) |
| 35 | 34 | ralrimivva | ⊢ ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) |
| 36 | 9 35 | jca | ⊢ ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( ◡ 𝐹 : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) |
| 37 | 2 1 17 16 | ismgmhm | ⊢ ( ◡ 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) ↔ ( ( 𝑆 ∈ Mgm ∧ 𝑅 ∈ Mgm ) ∧ ( ◡ 𝐹 : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 38 | 5 36 37 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ◡ 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) ) |
| 39 | 1 2 | mgmhmf | ⊢ ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 40 | 39 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 41 | 40 | ffnd | ⊢ ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) ) → 𝐹 Fn 𝐵 ) |
| 42 | 2 1 | mgmhmf | ⊢ ( ◡ 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) → ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) |
| 43 | 42 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) ) → ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) |
| 44 | 43 | ffnd | ⊢ ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) ) → ◡ 𝐹 Fn 𝐶 ) |
| 45 | dff1o4 | ⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ ( 𝐹 Fn 𝐵 ∧ ◡ 𝐹 Fn 𝐶 ) ) | |
| 46 | 41 44 45 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) |
| 47 | 38 46 | impbida | ⊢ ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) → ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ ◡ 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) ) ) |