This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity homomorphism on a magma. (Contributed by AV, 27-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | idmgmhm.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| Assertion | idmgmhm | ⊢ ( 𝑀 ∈ Mgm → ( I ↾ 𝐵 ) ∈ ( 𝑀 MgmHom 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idmgmhm.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | id | ⊢ ( 𝑀 ∈ Mgm → 𝑀 ∈ Mgm ) | |
| 3 | 2 | ancri | ⊢ ( 𝑀 ∈ Mgm → ( 𝑀 ∈ Mgm ∧ 𝑀 ∈ Mgm ) ) |
| 4 | f1oi | ⊢ ( I ↾ 𝐵 ) : 𝐵 –1-1-onto→ 𝐵 | |
| 5 | f1of | ⊢ ( ( I ↾ 𝐵 ) : 𝐵 –1-1-onto→ 𝐵 → ( I ↾ 𝐵 ) : 𝐵 ⟶ 𝐵 ) | |
| 6 | 4 5 | mp1i | ⊢ ( 𝑀 ∈ Mgm → ( I ↾ 𝐵 ) : 𝐵 ⟶ 𝐵 ) |
| 7 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 8 | 1 7 | mgmcl | ⊢ ( ( 𝑀 ∈ Mgm ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) |
| 9 | 8 | 3expb | ⊢ ( ( 𝑀 ∈ Mgm ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) |
| 10 | fvresi | ⊢ ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝑀 ∈ Mgm ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) |
| 12 | fvresi | ⊢ ( 𝑎 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑎 ) = 𝑎 ) | |
| 13 | fvresi | ⊢ ( 𝑏 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑏 ) = 𝑏 ) | |
| 14 | 12 13 | oveqan12d | ⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝑀 ∈ Mgm ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) |
| 16 | 11 15 | eqtr4d | ⊢ ( ( 𝑀 ∈ Mgm ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) ) |
| 17 | 16 | ralrimivva | ⊢ ( 𝑀 ∈ Mgm → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) ) |
| 18 | 6 17 | jca | ⊢ ( 𝑀 ∈ Mgm → ( ( I ↾ 𝐵 ) : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) ) ) |
| 19 | 1 1 7 7 | ismgmhm | ⊢ ( ( I ↾ 𝐵 ) ∈ ( 𝑀 MgmHom 𝑀 ) ↔ ( ( 𝑀 ∈ Mgm ∧ 𝑀 ∈ Mgm ) ∧ ( ( I ↾ 𝐵 ) : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g ‘ 𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) ) ) ) |
| 20 | 3 18 19 | sylanbrc | ⊢ ( 𝑀 ∈ Mgm → ( I ↾ 𝐵 ) ∈ ( 𝑀 MgmHom 𝑀 ) ) |