This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for metss2 . (Contributed by Mario Carneiro, 14-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metequiv.3 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| metequiv.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | ||
| metss2.1 | ⊢ ( 𝜑 → 𝐶 ∈ ( Met ‘ 𝑋 ) ) | ||
| metss2.2 | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | ||
| metss2.3 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| metss2.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐶 𝑦 ) ≤ ( 𝑅 · ( 𝑥 𝐷 𝑦 ) ) ) | ||
| Assertion | metss2lem | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑆 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metequiv.3 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| 2 | metequiv.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | |
| 3 | metss2.1 | ⊢ ( 𝜑 → 𝐶 ∈ ( Met ‘ 𝑋 ) ) | |
| 4 | metss2.2 | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 5 | metss2.3 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 6 | metss2.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐶 𝑦 ) ≤ ( 𝑅 · ( 𝑥 𝐷 𝑦 ) ) ) | |
| 7 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 8 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 9 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ 𝑋 ) | |
| 10 | metcl | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) ∈ ℝ ) | |
| 11 | 7 8 9 10 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) ∈ ℝ ) |
| 12 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑋 ) → 𝑆 ∈ ℝ+ ) | |
| 13 | 12 | rpred | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑋 ) → 𝑆 ∈ ℝ ) |
| 14 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑋 ) → 𝑅 ∈ ℝ+ ) |
| 15 | 11 13 14 | ltmuldiv2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑅 · ( 𝑥 𝐷 𝑦 ) ) < 𝑆 ↔ ( 𝑥 𝐷 𝑦 ) < ( 𝑆 / 𝑅 ) ) ) |
| 16 | 6 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐶 𝑦 ) ≤ ( 𝑅 · ( 𝑥 𝐷 𝑦 ) ) ) |
| 17 | 16 | adantlrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐶 𝑦 ) ≤ ( 𝑅 · ( 𝑥 𝐷 𝑦 ) ) ) |
| 18 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑋 ) → 𝐶 ∈ ( Met ‘ 𝑋 ) ) |
| 19 | metcl | ⊢ ( ( 𝐶 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐶 𝑦 ) ∈ ℝ ) | |
| 20 | 18 8 9 19 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐶 𝑦 ) ∈ ℝ ) |
| 21 | 14 | rpred | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑋 ) → 𝑅 ∈ ℝ ) |
| 22 | 21 11 | remulcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑅 · ( 𝑥 𝐷 𝑦 ) ) ∈ ℝ ) |
| 23 | lelttr | ⊢ ( ( ( 𝑥 𝐶 𝑦 ) ∈ ℝ ∧ ( 𝑅 · ( 𝑥 𝐷 𝑦 ) ) ∈ ℝ ∧ 𝑆 ∈ ℝ ) → ( ( ( 𝑥 𝐶 𝑦 ) ≤ ( 𝑅 · ( 𝑥 𝐷 𝑦 ) ) ∧ ( 𝑅 · ( 𝑥 𝐷 𝑦 ) ) < 𝑆 ) → ( 𝑥 𝐶 𝑦 ) < 𝑆 ) ) | |
| 24 | 20 22 13 23 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 𝐶 𝑦 ) ≤ ( 𝑅 · ( 𝑥 𝐷 𝑦 ) ) ∧ ( 𝑅 · ( 𝑥 𝐷 𝑦 ) ) < 𝑆 ) → ( 𝑥 𝐶 𝑦 ) < 𝑆 ) ) |
| 25 | 17 24 | mpand | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑅 · ( 𝑥 𝐷 𝑦 ) ) < 𝑆 → ( 𝑥 𝐶 𝑦 ) < 𝑆 ) ) |
| 26 | 15 25 | sylbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) < ( 𝑆 / 𝑅 ) → ( 𝑥 𝐶 𝑦 ) < 𝑆 ) ) |
| 27 | 26 | ss2rabdv | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) ) → { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < ( 𝑆 / 𝑅 ) } ⊆ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐶 𝑦 ) < 𝑆 } ) |
| 28 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 29 | 4 28 | syl | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 30 | 29 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 31 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) ) → 𝑥 ∈ 𝑋 ) | |
| 32 | simpr | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) → 𝑆 ∈ ℝ+ ) | |
| 33 | rpdivcl | ⊢ ( ( 𝑆 ∈ ℝ+ ∧ 𝑅 ∈ ℝ+ ) → ( 𝑆 / 𝑅 ) ∈ ℝ+ ) | |
| 34 | 32 5 33 | syl2anr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) ) → ( 𝑆 / 𝑅 ) ∈ ℝ+ ) |
| 35 | 34 | rpxrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) ) → ( 𝑆 / 𝑅 ) ∈ ℝ* ) |
| 36 | blval | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑆 / 𝑅 ) ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑆 / 𝑅 ) ) = { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < ( 𝑆 / 𝑅 ) } ) | |
| 37 | 30 31 35 36 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑆 / 𝑅 ) ) = { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < ( 𝑆 / 𝑅 ) } ) |
| 38 | metxmet | ⊢ ( 𝐶 ∈ ( Met ‘ 𝑋 ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 39 | 3 38 | syl | ⊢ ( 𝜑 → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 40 | 39 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 41 | rpxr | ⊢ ( 𝑆 ∈ ℝ+ → 𝑆 ∈ ℝ* ) | |
| 42 | 41 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) ) → 𝑆 ∈ ℝ* ) |
| 43 | blval | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝐶 ) 𝑆 ) = { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐶 𝑦 ) < 𝑆 } ) | |
| 44 | 40 31 42 43 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) ) → ( 𝑥 ( ball ‘ 𝐶 ) 𝑆 ) = { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐶 𝑦 ) < 𝑆 } ) |
| 45 | 27 37 44 | 3sstr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+ ) ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑆 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑆 ) ) |