This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for metss2 . (Contributed by Mario Carneiro, 14-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metequiv.3 | |- J = ( MetOpen ` C ) |
|
| metequiv.4 | |- K = ( MetOpen ` D ) |
||
| metss2.1 | |- ( ph -> C e. ( Met ` X ) ) |
||
| metss2.2 | |- ( ph -> D e. ( Met ` X ) ) |
||
| metss2.3 | |- ( ph -> R e. RR+ ) |
||
| metss2.4 | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x C y ) <_ ( R x. ( x D y ) ) ) |
||
| Assertion | metss2lem | |- ( ( ph /\ ( x e. X /\ S e. RR+ ) ) -> ( x ( ball ` D ) ( S / R ) ) C_ ( x ( ball ` C ) S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metequiv.3 | |- J = ( MetOpen ` C ) |
|
| 2 | metequiv.4 | |- K = ( MetOpen ` D ) |
|
| 3 | metss2.1 | |- ( ph -> C e. ( Met ` X ) ) |
|
| 4 | metss2.2 | |- ( ph -> D e. ( Met ` X ) ) |
|
| 5 | metss2.3 | |- ( ph -> R e. RR+ ) |
|
| 6 | metss2.4 | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x C y ) <_ ( R x. ( x D y ) ) ) |
|
| 7 | 4 | ad2antrr | |- ( ( ( ph /\ ( x e. X /\ S e. RR+ ) ) /\ y e. X ) -> D e. ( Met ` X ) ) |
| 8 | simplrl | |- ( ( ( ph /\ ( x e. X /\ S e. RR+ ) ) /\ y e. X ) -> x e. X ) |
|
| 9 | simpr | |- ( ( ( ph /\ ( x e. X /\ S e. RR+ ) ) /\ y e. X ) -> y e. X ) |
|
| 10 | metcl | |- ( ( D e. ( Met ` X ) /\ x e. X /\ y e. X ) -> ( x D y ) e. RR ) |
|
| 11 | 7 8 9 10 | syl3anc | |- ( ( ( ph /\ ( x e. X /\ S e. RR+ ) ) /\ y e. X ) -> ( x D y ) e. RR ) |
| 12 | simplrr | |- ( ( ( ph /\ ( x e. X /\ S e. RR+ ) ) /\ y e. X ) -> S e. RR+ ) |
|
| 13 | 12 | rpred | |- ( ( ( ph /\ ( x e. X /\ S e. RR+ ) ) /\ y e. X ) -> S e. RR ) |
| 14 | 5 | ad2antrr | |- ( ( ( ph /\ ( x e. X /\ S e. RR+ ) ) /\ y e. X ) -> R e. RR+ ) |
| 15 | 11 13 14 | ltmuldiv2d | |- ( ( ( ph /\ ( x e. X /\ S e. RR+ ) ) /\ y e. X ) -> ( ( R x. ( x D y ) ) < S <-> ( x D y ) < ( S / R ) ) ) |
| 16 | 6 | anassrs | |- ( ( ( ph /\ x e. X ) /\ y e. X ) -> ( x C y ) <_ ( R x. ( x D y ) ) ) |
| 17 | 16 | adantlrr | |- ( ( ( ph /\ ( x e. X /\ S e. RR+ ) ) /\ y e. X ) -> ( x C y ) <_ ( R x. ( x D y ) ) ) |
| 18 | 3 | ad2antrr | |- ( ( ( ph /\ ( x e. X /\ S e. RR+ ) ) /\ y e. X ) -> C e. ( Met ` X ) ) |
| 19 | metcl | |- ( ( C e. ( Met ` X ) /\ x e. X /\ y e. X ) -> ( x C y ) e. RR ) |
|
| 20 | 18 8 9 19 | syl3anc | |- ( ( ( ph /\ ( x e. X /\ S e. RR+ ) ) /\ y e. X ) -> ( x C y ) e. RR ) |
| 21 | 14 | rpred | |- ( ( ( ph /\ ( x e. X /\ S e. RR+ ) ) /\ y e. X ) -> R e. RR ) |
| 22 | 21 11 | remulcld | |- ( ( ( ph /\ ( x e. X /\ S e. RR+ ) ) /\ y e. X ) -> ( R x. ( x D y ) ) e. RR ) |
| 23 | lelttr | |- ( ( ( x C y ) e. RR /\ ( R x. ( x D y ) ) e. RR /\ S e. RR ) -> ( ( ( x C y ) <_ ( R x. ( x D y ) ) /\ ( R x. ( x D y ) ) < S ) -> ( x C y ) < S ) ) |
|
| 24 | 20 22 13 23 | syl3anc | |- ( ( ( ph /\ ( x e. X /\ S e. RR+ ) ) /\ y e. X ) -> ( ( ( x C y ) <_ ( R x. ( x D y ) ) /\ ( R x. ( x D y ) ) < S ) -> ( x C y ) < S ) ) |
| 25 | 17 24 | mpand | |- ( ( ( ph /\ ( x e. X /\ S e. RR+ ) ) /\ y e. X ) -> ( ( R x. ( x D y ) ) < S -> ( x C y ) < S ) ) |
| 26 | 15 25 | sylbird | |- ( ( ( ph /\ ( x e. X /\ S e. RR+ ) ) /\ y e. X ) -> ( ( x D y ) < ( S / R ) -> ( x C y ) < S ) ) |
| 27 | 26 | ss2rabdv | |- ( ( ph /\ ( x e. X /\ S e. RR+ ) ) -> { y e. X | ( x D y ) < ( S / R ) } C_ { y e. X | ( x C y ) < S } ) |
| 28 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 29 | 4 28 | syl | |- ( ph -> D e. ( *Met ` X ) ) |
| 30 | 29 | adantr | |- ( ( ph /\ ( x e. X /\ S e. RR+ ) ) -> D e. ( *Met ` X ) ) |
| 31 | simprl | |- ( ( ph /\ ( x e. X /\ S e. RR+ ) ) -> x e. X ) |
|
| 32 | simpr | |- ( ( x e. X /\ S e. RR+ ) -> S e. RR+ ) |
|
| 33 | rpdivcl | |- ( ( S e. RR+ /\ R e. RR+ ) -> ( S / R ) e. RR+ ) |
|
| 34 | 32 5 33 | syl2anr | |- ( ( ph /\ ( x e. X /\ S e. RR+ ) ) -> ( S / R ) e. RR+ ) |
| 35 | 34 | rpxrd | |- ( ( ph /\ ( x e. X /\ S e. RR+ ) ) -> ( S / R ) e. RR* ) |
| 36 | blval | |- ( ( D e. ( *Met ` X ) /\ x e. X /\ ( S / R ) e. RR* ) -> ( x ( ball ` D ) ( S / R ) ) = { y e. X | ( x D y ) < ( S / R ) } ) |
|
| 37 | 30 31 35 36 | syl3anc | |- ( ( ph /\ ( x e. X /\ S e. RR+ ) ) -> ( x ( ball ` D ) ( S / R ) ) = { y e. X | ( x D y ) < ( S / R ) } ) |
| 38 | metxmet | |- ( C e. ( Met ` X ) -> C e. ( *Met ` X ) ) |
|
| 39 | 3 38 | syl | |- ( ph -> C e. ( *Met ` X ) ) |
| 40 | 39 | adantr | |- ( ( ph /\ ( x e. X /\ S e. RR+ ) ) -> C e. ( *Met ` X ) ) |
| 41 | rpxr | |- ( S e. RR+ -> S e. RR* ) |
|
| 42 | 41 | ad2antll | |- ( ( ph /\ ( x e. X /\ S e. RR+ ) ) -> S e. RR* ) |
| 43 | blval | |- ( ( C e. ( *Met ` X ) /\ x e. X /\ S e. RR* ) -> ( x ( ball ` C ) S ) = { y e. X | ( x C y ) < S } ) |
|
| 44 | 40 31 42 43 | syl3anc | |- ( ( ph /\ ( x e. X /\ S e. RR+ ) ) -> ( x ( ball ` C ) S ) = { y e. X | ( x C y ) < S } ) |
| 45 | 27 37 44 | 3sstr4d | |- ( ( ph /\ ( x e. X /\ S e. RR+ ) ) -> ( x ( ball ` D ) ( S / R ) ) C_ ( x ( ball ` C ) S ) ) |