This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the metric D is "strongly finer" than C (meaning that there is a positive real constant R such that C ( x , y ) <_ R x. D ( x , y ) ), then D generates a finer topology. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they generate the same topology.) (Contributed by Mario Carneiro, 14-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metequiv.3 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| metequiv.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | ||
| metss2.1 | ⊢ ( 𝜑 → 𝐶 ∈ ( Met ‘ 𝑋 ) ) | ||
| metss2.2 | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | ||
| metss2.3 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| metss2.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐶 𝑦 ) ≤ ( 𝑅 · ( 𝑥 𝐷 𝑦 ) ) ) | ||
| Assertion | metss2 | ⊢ ( 𝜑 → 𝐽 ⊆ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metequiv.3 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| 2 | metequiv.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | |
| 3 | metss2.1 | ⊢ ( 𝜑 → 𝐶 ∈ ( Met ‘ 𝑋 ) ) | |
| 4 | metss2.2 | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 5 | metss2.3 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 6 | metss2.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐶 𝑦 ) ≤ ( 𝑅 · ( 𝑥 𝐷 𝑦 ) ) ) | |
| 7 | simpr | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℝ+ ) | |
| 8 | rpdivcl | ⊢ ( ( 𝑟 ∈ ℝ+ ∧ 𝑅 ∈ ℝ+ ) → ( 𝑟 / 𝑅 ) ∈ ℝ+ ) | |
| 9 | 7 5 8 | syl2anr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝑟 / 𝑅 ) ∈ ℝ+ ) |
| 10 | 1 2 3 4 5 6 | metss2lem | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) |
| 11 | oveq2 | ⊢ ( 𝑠 = ( 𝑟 / 𝑅 ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) = ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) | |
| 12 | 11 | sseq1d | ⊢ ( 𝑠 = ( 𝑟 / 𝑅 ) → ( ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ↔ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 13 | 12 | rspcev | ⊢ ( ( ( 𝑟 / 𝑅 ) ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) |
| 14 | 9 10 13 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) |
| 15 | 14 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) |
| 16 | metxmet | ⊢ ( 𝐶 ∈ ( Met ‘ 𝑋 ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 17 | 3 16 | syl | ⊢ ( 𝜑 → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 18 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 19 | 4 18 | syl | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 20 | 1 2 | metss | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( 𝐽 ⊆ 𝐾 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 21 | 17 19 20 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 ⊆ 𝐾 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 22 | 15 21 | mpbird | ⊢ ( 𝜑 → 𝐽 ⊆ 𝐾 ) |