This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ball around a point P is the set of all points whose distance from P is less than the ball's radius R . (Contributed by NM, 31-Aug-2006) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | blval | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) = { 𝑥 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑥 ) < 𝑅 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blfval | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ball ‘ 𝐷 ) = ( 𝑦 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑥 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑥 ) < 𝑟 } ) ) | |
| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( ball ‘ 𝐷 ) = ( 𝑦 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑥 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑥 ) < 𝑟 } ) ) |
| 3 | simprl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑦 = 𝑃 ∧ 𝑟 = 𝑅 ) ) → 𝑦 = 𝑃 ) | |
| 4 | 3 | oveq1d | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑦 = 𝑃 ∧ 𝑟 = 𝑅 ) ) → ( 𝑦 𝐷 𝑥 ) = ( 𝑃 𝐷 𝑥 ) ) |
| 5 | simprr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑦 = 𝑃 ∧ 𝑟 = 𝑅 ) ) → 𝑟 = 𝑅 ) | |
| 6 | 4 5 | breq12d | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑦 = 𝑃 ∧ 𝑟 = 𝑅 ) ) → ( ( 𝑦 𝐷 𝑥 ) < 𝑟 ↔ ( 𝑃 𝐷 𝑥 ) < 𝑅 ) ) |
| 7 | 6 | rabbidv | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑦 = 𝑃 ∧ 𝑟 = 𝑅 ) ) → { 𝑥 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑥 ) < 𝑟 } = { 𝑥 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑥 ) < 𝑅 } ) |
| 8 | simp2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → 𝑃 ∈ 𝑋 ) | |
| 9 | simp3 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → 𝑅 ∈ ℝ* ) | |
| 10 | elfvdm | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) | |
| 11 | 10 | 3ad2ant1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → 𝑋 ∈ dom ∞Met ) |
| 12 | rabexg | ⊢ ( 𝑋 ∈ dom ∞Met → { 𝑥 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑥 ) < 𝑅 } ∈ V ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → { 𝑥 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑥 ) < 𝑅 } ∈ V ) |
| 14 | 2 7 8 9 13 | ovmpod | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) = { 𝑥 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑥 ) < 𝑅 } ) |