This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that metric D generates a finer topology than metric C . (Contributed by Mario Carneiro, 12-Nov-2013) (Revised by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metequiv.3 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| metequiv.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | ||
| Assertion | metss | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( 𝐽 ⊆ 𝐾 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metequiv.3 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| 2 | metequiv.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | |
| 3 | 1 | mopnval | ⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 = ( topGen ‘ ran ( ball ‘ 𝐶 ) ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → 𝐽 = ( topGen ‘ ran ( ball ‘ 𝐶 ) ) ) |
| 5 | 2 | mopnval | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐾 = ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → 𝐾 = ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) |
| 7 | 4 6 | sseq12d | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( 𝐽 ⊆ 𝐾 ↔ ( topGen ‘ ran ( ball ‘ 𝐶 ) ) ⊆ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) ) |
| 8 | blbas | ⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → ran ( ball ‘ 𝐶 ) ∈ TopBases ) | |
| 9 | unirnbl | ⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → ∪ ran ( ball ‘ 𝐶 ) = 𝑋 ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ∪ ran ( ball ‘ 𝐶 ) = 𝑋 ) |
| 11 | unirnbl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∪ ran ( ball ‘ 𝐷 ) = 𝑋 ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ∪ ran ( ball ‘ 𝐷 ) = 𝑋 ) |
| 13 | 10 12 | eqtr4d | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ∪ ran ( ball ‘ 𝐶 ) = ∪ ran ( ball ‘ 𝐷 ) ) |
| 14 | tgss2 | ⊢ ( ( ran ( ball ‘ 𝐶 ) ∈ TopBases ∧ ∪ ran ( ball ‘ 𝐶 ) = ∪ ran ( ball ‘ 𝐷 ) ) → ( ( topGen ‘ ran ( ball ‘ 𝐶 ) ) ⊆ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ↔ ∀ 𝑥 ∈ ∪ ran ( ball ‘ 𝐶 ) ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) ) | |
| 15 | 8 13 14 | syl2an2r | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( ( topGen ‘ ran ( ball ‘ 𝐶 ) ) ⊆ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ↔ ∀ 𝑥 ∈ ∪ ran ( ball ‘ 𝐶 ) ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) ) |
| 16 | 10 | raleqdv | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ ∪ ran ( ball ‘ 𝐶 ) ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) ) |
| 17 | blssex | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ↔ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) ) | |
| 18 | 17 | adantll | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ↔ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) ) |
| 19 | 18 | imbi2d | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ↔ ( 𝑥 ∈ 𝑦 → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) ) ) |
| 20 | 19 | ralbidv | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) ) ) |
| 21 | rpxr | ⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ* ) | |
| 22 | blelrn | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∈ ran ( ball ‘ 𝐶 ) ) | |
| 23 | 21 22 | syl3an3 | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∈ ran ( ball ‘ 𝐶 ) ) |
| 24 | blcntr | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) | |
| 25 | eleq2 | ⊢ ( 𝑦 = ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) | |
| 26 | sseq2 | ⊢ ( 𝑦 = ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ( ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ↔ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) | |
| 27 | 26 | rexbidv | ⊢ ( 𝑦 = ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ( ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ↔ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 28 | 25 27 | imbi12d | ⊢ ( 𝑦 = ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ( ( 𝑥 ∈ 𝑦 → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) ↔ ( 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
| 29 | 28 | rspcv | ⊢ ( ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∈ ran ( ball ‘ 𝐶 ) → ( ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) → ( 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
| 30 | 29 | com23 | ⊢ ( ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∈ ran ( ball ‘ 𝐶 ) → ( 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ( ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
| 31 | 23 24 30 | sylc | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → ( ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 32 | 31 | ad4ant134 | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) → ( ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 33 | 32 | ralrimdva | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 34 | blss | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑦 ) | |
| 35 | 34 | 3expb | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑦 ∈ ran ( ball ‘ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) ) → ∃ 𝑟 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑦 ) |
| 36 | 35 | ad4ant14 | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ ran ( ball ‘ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) ) → ∃ 𝑟 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑦 ) |
| 37 | r19.29 | ⊢ ( ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ∃ 𝑟 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑦 ) → ∃ 𝑟 ∈ ℝ+ ( ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑦 ) ) | |
| 38 | sstr | ⊢ ( ( ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑦 ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) | |
| 39 | 38 | expcom | ⊢ ( ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑦 → ( ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) ) |
| 40 | 39 | reximdv | ⊢ ( ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑦 → ( ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) ) |
| 41 | 40 | impcom | ⊢ ( ( ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑦 ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) |
| 42 | 41 | rexlimivw | ⊢ ( ∃ 𝑟 ∈ ℝ+ ( ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑦 ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) |
| 43 | 37 42 | syl | ⊢ ( ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ∃ 𝑟 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑦 ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) |
| 44 | 43 | ex | ⊢ ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ( ∃ 𝑟 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑦 → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) ) |
| 45 | 36 44 | syl5com | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ ran ( ball ‘ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) ) → ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) ) |
| 46 | 45 | expr | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ) → ( 𝑥 ∈ 𝑦 → ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) ) ) |
| 47 | 46 | com23 | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ) → ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ( 𝑥 ∈ 𝑦 → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) ) ) |
| 48 | 47 | ralrimdva | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) ) ) |
| 49 | 33 48 | impbid | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ 𝑦 ) ↔ ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 50 | 20 49 | bitrd | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ↔ ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 51 | 50 | ralbidva | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 52 | 16 51 | bitrd | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ ∪ ran ( ball ‘ 𝐶 ) ∀ 𝑦 ∈ ran ( ball ‘ 𝐶 ) ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 53 | 7 15 52 | 3bitrd | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( 𝐽 ⊆ 𝐾 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |