This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that two metrics generate the same topology. Two metrics satisfying the right-hand side are said to be (topologically) equivalent. (Contributed by Jeff Hankins, 21-Jun-2009) (Revised by Mario Carneiro, 12-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metequiv.3 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| metequiv.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | ||
| Assertion | metequiv | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( 𝐽 = 𝐾 ↔ ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ∀ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐶 ) 𝑏 ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑎 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metequiv.3 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| 2 | metequiv.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | |
| 3 | 1 2 | metss | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( 𝐽 ⊆ 𝐾 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 4 | 2 1 | metss | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) → ( 𝐾 ⊆ 𝐽 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐶 ) 𝑏 ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑎 ) ) ) |
| 5 | 4 | ancoms | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( 𝐾 ⊆ 𝐽 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐶 ) 𝑏 ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑎 ) ) ) |
| 6 | 3 5 | anbi12d | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( ( 𝐽 ⊆ 𝐾 ∧ 𝐾 ⊆ 𝐽 ) ↔ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐶 ) 𝑏 ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑎 ) ) ) ) |
| 7 | eqss | ⊢ ( 𝐽 = 𝐾 ↔ ( 𝐽 ⊆ 𝐾 ∧ 𝐾 ⊆ 𝐽 ) ) | |
| 8 | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ∀ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐶 ) 𝑏 ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑎 ) ) ↔ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐶 ) 𝑏 ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑎 ) ) ) | |
| 9 | 6 7 8 | 3bitr4g | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( 𝐽 = 𝐾 ↔ ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ∀ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐶 ) 𝑏 ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑎 ) ) ) ) |