This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that metric D generates a finer topology than metric C . (Contributed by Mario Carneiro, 12-Nov-2013) (Revised by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metequiv.3 | |- J = ( MetOpen ` C ) |
|
| metequiv.4 | |- K = ( MetOpen ` D ) |
||
| Assertion | metss | |- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> ( J C_ K <-> A. x e. X A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metequiv.3 | |- J = ( MetOpen ` C ) |
|
| 2 | metequiv.4 | |- K = ( MetOpen ` D ) |
|
| 3 | 1 | mopnval | |- ( C e. ( *Met ` X ) -> J = ( topGen ` ran ( ball ` C ) ) ) |
| 4 | 3 | adantr | |- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> J = ( topGen ` ran ( ball ` C ) ) ) |
| 5 | 2 | mopnval | |- ( D e. ( *Met ` X ) -> K = ( topGen ` ran ( ball ` D ) ) ) |
| 6 | 5 | adantl | |- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> K = ( topGen ` ran ( ball ` D ) ) ) |
| 7 | 4 6 | sseq12d | |- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> ( J C_ K <-> ( topGen ` ran ( ball ` C ) ) C_ ( topGen ` ran ( ball ` D ) ) ) ) |
| 8 | blbas | |- ( C e. ( *Met ` X ) -> ran ( ball ` C ) e. TopBases ) |
|
| 9 | unirnbl | |- ( C e. ( *Met ` X ) -> U. ran ( ball ` C ) = X ) |
|
| 10 | 9 | adantr | |- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> U. ran ( ball ` C ) = X ) |
| 11 | unirnbl | |- ( D e. ( *Met ` X ) -> U. ran ( ball ` D ) = X ) |
|
| 12 | 11 | adantl | |- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> U. ran ( ball ` D ) = X ) |
| 13 | 10 12 | eqtr4d | |- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> U. ran ( ball ` C ) = U. ran ( ball ` D ) ) |
| 14 | tgss2 | |- ( ( ran ( ball ` C ) e. TopBases /\ U. ran ( ball ` C ) = U. ran ( ball ` D ) ) -> ( ( topGen ` ran ( ball ` C ) ) C_ ( topGen ` ran ( ball ` D ) ) <-> A. x e. U. ran ( ball ` C ) A. y e. ran ( ball ` C ) ( x e. y -> E. z e. ran ( ball ` D ) ( x e. z /\ z C_ y ) ) ) ) |
|
| 15 | 8 13 14 | syl2an2r | |- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> ( ( topGen ` ran ( ball ` C ) ) C_ ( topGen ` ran ( ball ` D ) ) <-> A. x e. U. ran ( ball ` C ) A. y e. ran ( ball ` C ) ( x e. y -> E. z e. ran ( ball ` D ) ( x e. z /\ z C_ y ) ) ) ) |
| 16 | 10 | raleqdv | |- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> ( A. x e. U. ran ( ball ` C ) A. y e. ran ( ball ` C ) ( x e. y -> E. z e. ran ( ball ` D ) ( x e. z /\ z C_ y ) ) <-> A. x e. X A. y e. ran ( ball ` C ) ( x e. y -> E. z e. ran ( ball ` D ) ( x e. z /\ z C_ y ) ) ) ) |
| 17 | blssex | |- ( ( D e. ( *Met ` X ) /\ x e. X ) -> ( E. z e. ran ( ball ` D ) ( x e. z /\ z C_ y ) <-> E. s e. RR+ ( x ( ball ` D ) s ) C_ y ) ) |
|
| 18 | 17 | adantll | |- ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) -> ( E. z e. ran ( ball ` D ) ( x e. z /\ z C_ y ) <-> E. s e. RR+ ( x ( ball ` D ) s ) C_ y ) ) |
| 19 | 18 | imbi2d | |- ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) -> ( ( x e. y -> E. z e. ran ( ball ` D ) ( x e. z /\ z C_ y ) ) <-> ( x e. y -> E. s e. RR+ ( x ( ball ` D ) s ) C_ y ) ) ) |
| 20 | 19 | ralbidv | |- ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) -> ( A. y e. ran ( ball ` C ) ( x e. y -> E. z e. ran ( ball ` D ) ( x e. z /\ z C_ y ) ) <-> A. y e. ran ( ball ` C ) ( x e. y -> E. s e. RR+ ( x ( ball ` D ) s ) C_ y ) ) ) |
| 21 | rpxr | |- ( r e. RR+ -> r e. RR* ) |
|
| 22 | blelrn | |- ( ( C e. ( *Met ` X ) /\ x e. X /\ r e. RR* ) -> ( x ( ball ` C ) r ) e. ran ( ball ` C ) ) |
|
| 23 | 21 22 | syl3an3 | |- ( ( C e. ( *Met ` X ) /\ x e. X /\ r e. RR+ ) -> ( x ( ball ` C ) r ) e. ran ( ball ` C ) ) |
| 24 | blcntr | |- ( ( C e. ( *Met ` X ) /\ x e. X /\ r e. RR+ ) -> x e. ( x ( ball ` C ) r ) ) |
|
| 25 | eleq2 | |- ( y = ( x ( ball ` C ) r ) -> ( x e. y <-> x e. ( x ( ball ` C ) r ) ) ) |
|
| 26 | sseq2 | |- ( y = ( x ( ball ` C ) r ) -> ( ( x ( ball ` D ) s ) C_ y <-> ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) ) |
|
| 27 | 26 | rexbidv | |- ( y = ( x ( ball ` C ) r ) -> ( E. s e. RR+ ( x ( ball ` D ) s ) C_ y <-> E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) ) |
| 28 | 25 27 | imbi12d | |- ( y = ( x ( ball ` C ) r ) -> ( ( x e. y -> E. s e. RR+ ( x ( ball ` D ) s ) C_ y ) <-> ( x e. ( x ( ball ` C ) r ) -> E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) ) ) |
| 29 | 28 | rspcv | |- ( ( x ( ball ` C ) r ) e. ran ( ball ` C ) -> ( A. y e. ran ( ball ` C ) ( x e. y -> E. s e. RR+ ( x ( ball ` D ) s ) C_ y ) -> ( x e. ( x ( ball ` C ) r ) -> E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) ) ) |
| 30 | 29 | com23 | |- ( ( x ( ball ` C ) r ) e. ran ( ball ` C ) -> ( x e. ( x ( ball ` C ) r ) -> ( A. y e. ran ( ball ` C ) ( x e. y -> E. s e. RR+ ( x ( ball ` D ) s ) C_ y ) -> E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) ) ) |
| 31 | 23 24 30 | sylc | |- ( ( C e. ( *Met ` X ) /\ x e. X /\ r e. RR+ ) -> ( A. y e. ran ( ball ` C ) ( x e. y -> E. s e. RR+ ( x ( ball ` D ) s ) C_ y ) -> E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) ) |
| 32 | 31 | ad4ant134 | |- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ r e. RR+ ) -> ( A. y e. ran ( ball ` C ) ( x e. y -> E. s e. RR+ ( x ( ball ` D ) s ) C_ y ) -> E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) ) |
| 33 | 32 | ralrimdva | |- ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) -> ( A. y e. ran ( ball ` C ) ( x e. y -> E. s e. RR+ ( x ( ball ` D ) s ) C_ y ) -> A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) ) |
| 34 | blss | |- ( ( C e. ( *Met ` X ) /\ y e. ran ( ball ` C ) /\ x e. y ) -> E. r e. RR+ ( x ( ball ` C ) r ) C_ y ) |
|
| 35 | 34 | 3expb | |- ( ( C e. ( *Met ` X ) /\ ( y e. ran ( ball ` C ) /\ x e. y ) ) -> E. r e. RR+ ( x ( ball ` C ) r ) C_ y ) |
| 36 | 35 | ad4ant14 | |- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( y e. ran ( ball ` C ) /\ x e. y ) ) -> E. r e. RR+ ( x ( ball ` C ) r ) C_ y ) |
| 37 | r19.29 | |- ( ( A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ E. r e. RR+ ( x ( ball ` C ) r ) C_ y ) -> E. r e. RR+ ( E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ ( x ( ball ` C ) r ) C_ y ) ) |
|
| 38 | sstr | |- ( ( ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ ( x ( ball ` C ) r ) C_ y ) -> ( x ( ball ` D ) s ) C_ y ) |
|
| 39 | 38 | expcom | |- ( ( x ( ball ` C ) r ) C_ y -> ( ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) -> ( x ( ball ` D ) s ) C_ y ) ) |
| 40 | 39 | reximdv | |- ( ( x ( ball ` C ) r ) C_ y -> ( E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) -> E. s e. RR+ ( x ( ball ` D ) s ) C_ y ) ) |
| 41 | 40 | impcom | |- ( ( E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ ( x ( ball ` C ) r ) C_ y ) -> E. s e. RR+ ( x ( ball ` D ) s ) C_ y ) |
| 42 | 41 | rexlimivw | |- ( E. r e. RR+ ( E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ ( x ( ball ` C ) r ) C_ y ) -> E. s e. RR+ ( x ( ball ` D ) s ) C_ y ) |
| 43 | 37 42 | syl | |- ( ( A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ E. r e. RR+ ( x ( ball ` C ) r ) C_ y ) -> E. s e. RR+ ( x ( ball ` D ) s ) C_ y ) |
| 44 | 43 | ex | |- ( A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) -> ( E. r e. RR+ ( x ( ball ` C ) r ) C_ y -> E. s e. RR+ ( x ( ball ` D ) s ) C_ y ) ) |
| 45 | 36 44 | syl5com | |- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( y e. ran ( ball ` C ) /\ x e. y ) ) -> ( A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) -> E. s e. RR+ ( x ( ball ` D ) s ) C_ y ) ) |
| 46 | 45 | expr | |- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ y e. ran ( ball ` C ) ) -> ( x e. y -> ( A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) -> E. s e. RR+ ( x ( ball ` D ) s ) C_ y ) ) ) |
| 47 | 46 | com23 | |- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ y e. ran ( ball ` C ) ) -> ( A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) -> ( x e. y -> E. s e. RR+ ( x ( ball ` D ) s ) C_ y ) ) ) |
| 48 | 47 | ralrimdva | |- ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) -> ( A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) -> A. y e. ran ( ball ` C ) ( x e. y -> E. s e. RR+ ( x ( ball ` D ) s ) C_ y ) ) ) |
| 49 | 33 48 | impbid | |- ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) -> ( A. y e. ran ( ball ` C ) ( x e. y -> E. s e. RR+ ( x ( ball ` D ) s ) C_ y ) <-> A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) ) |
| 50 | 20 49 | bitrd | |- ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) -> ( A. y e. ran ( ball ` C ) ( x e. y -> E. z e. ran ( ball ` D ) ( x e. z /\ z C_ y ) ) <-> A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) ) |
| 51 | 50 | ralbidva | |- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> ( A. x e. X A. y e. ran ( ball ` C ) ( x e. y -> E. z e. ran ( ball ` D ) ( x e. z /\ z C_ y ) ) <-> A. x e. X A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) ) |
| 52 | 16 51 | bitrd | |- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> ( A. x e. U. ran ( ball ` C ) A. y e. ran ( ball ` C ) ( x e. y -> E. z e. ran ( ball ` D ) ( x e. z /\ z C_ y ) ) <-> A. x e. X A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) ) |
| 53 | 7 15 52 | 3bitrd | |- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> ( J C_ K <-> A. x e. X A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) ) |