This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A criterion for determining whether one topology is finer than another, based on a comparison of their bases. Lemma 2.2 of Munkres p. 80. (Contributed by NM, 20-Jul-2006) (Proof shortened by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tgss2 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪ 𝐶 ) → ( ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐶 ) ↔ ∀ 𝑥 ∈ ∪ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ 𝐶 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪ 𝐶 ) → ∪ 𝐵 = ∪ 𝐶 ) | |
| 2 | uniexg | ⊢ ( 𝐵 ∈ 𝑉 → ∪ 𝐵 ∈ V ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪ 𝐶 ) → ∪ 𝐵 ∈ V ) |
| 4 | 1 3 | eqeltrrd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪ 𝐶 ) → ∪ 𝐶 ∈ V ) |
| 5 | uniexb | ⊢ ( 𝐶 ∈ V ↔ ∪ 𝐶 ∈ V ) | |
| 6 | 4 5 | sylibr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪ 𝐶 ) → 𝐶 ∈ V ) |
| 7 | tgss3 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ V ) → ( ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐶 ) ↔ 𝐵 ⊆ ( topGen ‘ 𝐶 ) ) ) | |
| 8 | 6 7 | syldan | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪ 𝐶 ) → ( ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐶 ) ↔ 𝐵 ⊆ ( topGen ‘ 𝐶 ) ) ) |
| 9 | eltg2b | ⊢ ( 𝐶 ∈ V → ( 𝑦 ∈ ( topGen ‘ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝑦 ∃ 𝑧 ∈ 𝐶 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) | |
| 10 | 6 9 | syl | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪ 𝐶 ) → ( 𝑦 ∈ ( topGen ‘ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝑦 ∃ 𝑧 ∈ 𝐶 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) |
| 11 | elunii | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ ∪ 𝐵 ) | |
| 12 | 11 | ancoms | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ∈ ∪ 𝐵 ) |
| 13 | biimt | ⊢ ( 𝑥 ∈ ∪ 𝐵 → ( ∃ 𝑧 ∈ 𝐶 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ↔ ( 𝑥 ∈ ∪ 𝐵 → ∃ 𝑧 ∈ 𝐶 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝑦 ) → ( ∃ 𝑧 ∈ 𝐶 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ↔ ( 𝑥 ∈ ∪ 𝐵 → ∃ 𝑧 ∈ 𝐶 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) ) |
| 15 | 14 | ralbidva | ⊢ ( 𝑦 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝑦 ∃ 𝑧 ∈ 𝐶 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ∈ ∪ 𝐵 → ∃ 𝑧 ∈ 𝐶 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) ) |
| 16 | 10 15 | sylan9bb | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪ 𝐶 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ∈ ( topGen ‘ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ∈ ∪ 𝐵 → ∃ 𝑧 ∈ 𝐶 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) ) |
| 17 | ralcom3 | ⊢ ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 ∈ ∪ 𝐵 → ∃ 𝑧 ∈ 𝐶 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ∪ 𝐵 ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ 𝐶 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) | |
| 18 | 16 17 | bitrdi | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪ 𝐶 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ∈ ( topGen ‘ 𝐶 ) ↔ ∀ 𝑥 ∈ ∪ 𝐵 ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ 𝐶 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) ) |
| 19 | 18 | ralbidva | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪ 𝐶 ) → ( ∀ 𝑦 ∈ 𝐵 𝑦 ∈ ( topGen ‘ 𝐶 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ ∪ 𝐵 ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ 𝐶 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) ) |
| 20 | dfss3 | ⊢ ( 𝐵 ⊆ ( topGen ‘ 𝐶 ) ↔ ∀ 𝑦 ∈ 𝐵 𝑦 ∈ ( topGen ‘ 𝐶 ) ) | |
| 21 | ralcom | ⊢ ( ∀ 𝑥 ∈ ∪ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ 𝐶 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ ∪ 𝐵 ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ 𝐶 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) | |
| 22 | 19 20 21 | 3bitr4g | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪ 𝐶 ) → ( 𝐵 ⊆ ( topGen ‘ 𝐶 ) ↔ ∀ 𝑥 ∈ ∪ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ 𝐶 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) ) |
| 23 | 8 22 | bitrd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪ 𝐶 ) → ( ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐶 ) ↔ ∀ 𝑥 ∈ ∪ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 → ∃ 𝑧 ∈ 𝐶 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) ) |