This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for metnrm . (Contributed by Mario Carneiro, 14-Jan-2014) (Revised by Mario Carneiro, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metdscn.f | |- F = ( x e. X |-> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) ) |
|
| metdscn.j | |- J = ( MetOpen ` D ) |
||
| metnrmlem.1 | |- ( ph -> D e. ( *Met ` X ) ) |
||
| metnrmlem.2 | |- ( ph -> S e. ( Clsd ` J ) ) |
||
| metnrmlem.3 | |- ( ph -> T e. ( Clsd ` J ) ) |
||
| metnrmlem.4 | |- ( ph -> ( S i^i T ) = (/) ) |
||
| Assertion | metnrmlem1 | |- ( ( ph /\ ( A e. S /\ B e. T ) ) -> if ( 1 <_ ( F ` B ) , 1 , ( F ` B ) ) <_ ( A D B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metdscn.f | |- F = ( x e. X |-> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) ) |
|
| 2 | metdscn.j | |- J = ( MetOpen ` D ) |
|
| 3 | metnrmlem.1 | |- ( ph -> D e. ( *Met ` X ) ) |
|
| 4 | metnrmlem.2 | |- ( ph -> S e. ( Clsd ` J ) ) |
|
| 5 | metnrmlem.3 | |- ( ph -> T e. ( Clsd ` J ) ) |
|
| 6 | metnrmlem.4 | |- ( ph -> ( S i^i T ) = (/) ) |
|
| 7 | 1xr | |- 1 e. RR* |
|
| 8 | 3 | adantr | |- ( ( ph /\ ( A e. S /\ B e. T ) ) -> D e. ( *Met ` X ) ) |
| 9 | 4 | adantr | |- ( ( ph /\ ( A e. S /\ B e. T ) ) -> S e. ( Clsd ` J ) ) |
| 10 | eqid | |- U. J = U. J |
|
| 11 | 10 | cldss | |- ( S e. ( Clsd ` J ) -> S C_ U. J ) |
| 12 | 9 11 | syl | |- ( ( ph /\ ( A e. S /\ B e. T ) ) -> S C_ U. J ) |
| 13 | 2 | mopnuni | |- ( D e. ( *Met ` X ) -> X = U. J ) |
| 14 | 8 13 | syl | |- ( ( ph /\ ( A e. S /\ B e. T ) ) -> X = U. J ) |
| 15 | 12 14 | sseqtrrd | |- ( ( ph /\ ( A e. S /\ B e. T ) ) -> S C_ X ) |
| 16 | 1 | metdsf | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> F : X --> ( 0 [,] +oo ) ) |
| 17 | 8 15 16 | syl2anc | |- ( ( ph /\ ( A e. S /\ B e. T ) ) -> F : X --> ( 0 [,] +oo ) ) |
| 18 | 5 | adantr | |- ( ( ph /\ ( A e. S /\ B e. T ) ) -> T e. ( Clsd ` J ) ) |
| 19 | 10 | cldss | |- ( T e. ( Clsd ` J ) -> T C_ U. J ) |
| 20 | 18 19 | syl | |- ( ( ph /\ ( A e. S /\ B e. T ) ) -> T C_ U. J ) |
| 21 | 20 14 | sseqtrrd | |- ( ( ph /\ ( A e. S /\ B e. T ) ) -> T C_ X ) |
| 22 | simprr | |- ( ( ph /\ ( A e. S /\ B e. T ) ) -> B e. T ) |
|
| 23 | 21 22 | sseldd | |- ( ( ph /\ ( A e. S /\ B e. T ) ) -> B e. X ) |
| 24 | 17 23 | ffvelcdmd | |- ( ( ph /\ ( A e. S /\ B e. T ) ) -> ( F ` B ) e. ( 0 [,] +oo ) ) |
| 25 | eliccxr | |- ( ( F ` B ) e. ( 0 [,] +oo ) -> ( F ` B ) e. RR* ) |
|
| 26 | 24 25 | syl | |- ( ( ph /\ ( A e. S /\ B e. T ) ) -> ( F ` B ) e. RR* ) |
| 27 | ifcl | |- ( ( 1 e. RR* /\ ( F ` B ) e. RR* ) -> if ( 1 <_ ( F ` B ) , 1 , ( F ` B ) ) e. RR* ) |
|
| 28 | 7 26 27 | sylancr | |- ( ( ph /\ ( A e. S /\ B e. T ) ) -> if ( 1 <_ ( F ` B ) , 1 , ( F ` B ) ) e. RR* ) |
| 29 | simprl | |- ( ( ph /\ ( A e. S /\ B e. T ) ) -> A e. S ) |
|
| 30 | 15 29 | sseldd | |- ( ( ph /\ ( A e. S /\ B e. T ) ) -> A e. X ) |
| 31 | xmetcl | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( A D B ) e. RR* ) |
|
| 32 | 8 30 23 31 | syl3anc | |- ( ( ph /\ ( A e. S /\ B e. T ) ) -> ( A D B ) e. RR* ) |
| 33 | xrmin2 | |- ( ( 1 e. RR* /\ ( F ` B ) e. RR* ) -> if ( 1 <_ ( F ` B ) , 1 , ( F ` B ) ) <_ ( F ` B ) ) |
|
| 34 | 7 26 33 | sylancr | |- ( ( ph /\ ( A e. S /\ B e. T ) ) -> if ( 1 <_ ( F ` B ) , 1 , ( F ` B ) ) <_ ( F ` B ) ) |
| 35 | 1 | metdstri | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( B e. X /\ A e. X ) ) -> ( F ` B ) <_ ( ( B D A ) +e ( F ` A ) ) ) |
| 36 | 8 15 23 30 35 | syl22anc | |- ( ( ph /\ ( A e. S /\ B e. T ) ) -> ( F ` B ) <_ ( ( B D A ) +e ( F ` A ) ) ) |
| 37 | xmetsym | |- ( ( D e. ( *Met ` X ) /\ B e. X /\ A e. X ) -> ( B D A ) = ( A D B ) ) |
|
| 38 | 8 23 30 37 | syl3anc | |- ( ( ph /\ ( A e. S /\ B e. T ) ) -> ( B D A ) = ( A D B ) ) |
| 39 | 1 | metds0 | |- ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. S ) -> ( F ` A ) = 0 ) |
| 40 | 8 15 29 39 | syl3anc | |- ( ( ph /\ ( A e. S /\ B e. T ) ) -> ( F ` A ) = 0 ) |
| 41 | 38 40 | oveq12d | |- ( ( ph /\ ( A e. S /\ B e. T ) ) -> ( ( B D A ) +e ( F ` A ) ) = ( ( A D B ) +e 0 ) ) |
| 42 | 32 | xaddridd | |- ( ( ph /\ ( A e. S /\ B e. T ) ) -> ( ( A D B ) +e 0 ) = ( A D B ) ) |
| 43 | 41 42 | eqtrd | |- ( ( ph /\ ( A e. S /\ B e. T ) ) -> ( ( B D A ) +e ( F ` A ) ) = ( A D B ) ) |
| 44 | 36 43 | breqtrd | |- ( ( ph /\ ( A e. S /\ B e. T ) ) -> ( F ` B ) <_ ( A D B ) ) |
| 45 | 28 26 32 34 44 | xrletrd | |- ( ( ph /\ ( A e. S /\ B e. T ) ) -> if ( 1 <_ ( F ` B ) , 1 , ( F ` B ) ) <_ ( A D B ) ) |