This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a point is in a set, its distance to the set is zero. (Contributed by Mario Carneiro, 14-Feb-2015) (Revised by Mario Carneiro, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metdscn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) | |
| Assertion | metds0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → ( 𝐹 ‘ 𝐴 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metdscn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) | |
| 2 | 1 | metdsf | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 4 | ssel2 | ⊢ ( ( 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → 𝐴 ∈ 𝑋 ) | |
| 5 | 4 | 3adant1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → 𝐴 ∈ 𝑋 ) |
| 6 | 3 5 | ffvelcdmd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
| 7 | eliccxr | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) → ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) |
| 9 | 8 | xrleidd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐹 ‘ 𝐴 ) ) |
| 10 | simp1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 11 | simp2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → 𝑆 ⊆ 𝑋 ) | |
| 12 | 1 | metdsge | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) → ( ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐹 ‘ 𝐴 ) ↔ ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) = ∅ ) ) |
| 13 | 10 11 5 8 12 | syl31anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐹 ‘ 𝐴 ) ↔ ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) = ∅ ) ) |
| 14 | 9 13 | mpbid | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) = ∅ ) |
| 15 | simpl3 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 𝐴 ∈ 𝑆 ) | |
| 16 | 10 | adantr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 17 | 5 | adantr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 𝐴 ∈ 𝑋 ) |
| 18 | 8 | adantr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) |
| 19 | simpr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 0 < ( 𝐹 ‘ 𝐴 ) ) | |
| 20 | xblcntr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) ) → 𝐴 ∈ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) | |
| 21 | 16 17 18 19 20 | syl112anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 𝐴 ∈ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) |
| 22 | inelcm | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐴 ∈ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) → ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) ≠ ∅ ) | |
| 23 | 15 21 22 | syl2anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) ≠ ∅ ) |
| 24 | 23 | ex | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → ( 0 < ( 𝐹 ‘ 𝐴 ) → ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) ≠ ∅ ) ) |
| 25 | 24 | necon2bd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → ( ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) = ∅ → ¬ 0 < ( 𝐹 ‘ 𝐴 ) ) ) |
| 26 | 14 25 | mpd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → ¬ 0 < ( 𝐹 ‘ 𝐴 ) ) |
| 27 | elxrge0 | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝐴 ) ) ) | |
| 28 | 27 | simprbi | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( 𝐹 ‘ 𝐴 ) ) |
| 29 | 6 28 | syl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → 0 ≤ ( 𝐹 ‘ 𝐴 ) ) |
| 30 | 0xr | ⊢ 0 ∈ ℝ* | |
| 31 | xrleloe | ⊢ ( ( 0 ∈ ℝ* ∧ ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) → ( 0 ≤ ( 𝐹 ‘ 𝐴 ) ↔ ( 0 < ( 𝐹 ‘ 𝐴 ) ∨ 0 = ( 𝐹 ‘ 𝐴 ) ) ) ) | |
| 32 | 30 8 31 | sylancr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → ( 0 ≤ ( 𝐹 ‘ 𝐴 ) ↔ ( 0 < ( 𝐹 ‘ 𝐴 ) ∨ 0 = ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 33 | 29 32 | mpbid | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → ( 0 < ( 𝐹 ‘ 𝐴 ) ∨ 0 = ( 𝐹 ‘ 𝐴 ) ) ) |
| 34 | 33 | ord | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → ( ¬ 0 < ( 𝐹 ‘ 𝐴 ) → 0 = ( 𝐹 ‘ 𝐴 ) ) ) |
| 35 | 26 34 | mpd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → 0 = ( 𝐹 ‘ 𝐴 ) ) |
| 36 | 35 | eqcomd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → ( 𝐹 ‘ 𝐴 ) = 0 ) |