This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The metric of the extended real number structure. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xrsds.d | ⊢ 𝐷 = ( dist ‘ ℝ*𝑠 ) | |
| Assertion | xrsdsval | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 𝐷 𝐵 ) = if ( 𝐴 ≤ 𝐵 , ( 𝐵 +𝑒 -𝑒 𝐴 ) , ( 𝐴 +𝑒 -𝑒 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrsds.d | ⊢ 𝐷 = ( dist ‘ ℝ*𝑠 ) | |
| 2 | breq12 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 ≤ 𝑦 ↔ 𝐴 ≤ 𝐵 ) ) | |
| 3 | id | ⊢ ( 𝑦 = 𝐵 → 𝑦 = 𝐵 ) | |
| 4 | xnegeq | ⊢ ( 𝑥 = 𝐴 → -𝑒 𝑥 = -𝑒 𝐴 ) | |
| 5 | 3 4 | oveqan12rd | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑦 +𝑒 -𝑒 𝑥 ) = ( 𝐵 +𝑒 -𝑒 𝐴 ) ) |
| 6 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
| 7 | xnegeq | ⊢ ( 𝑦 = 𝐵 → -𝑒 𝑦 = -𝑒 𝐵 ) | |
| 8 | 6 7 | oveqan12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 +𝑒 -𝑒 𝑦 ) = ( 𝐴 +𝑒 -𝑒 𝐵 ) ) |
| 9 | 2 5 8 | ifbieq12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( 𝑥 ≤ 𝑦 , ( 𝑦 +𝑒 -𝑒 𝑥 ) , ( 𝑥 +𝑒 -𝑒 𝑦 ) ) = if ( 𝐴 ≤ 𝐵 , ( 𝐵 +𝑒 -𝑒 𝐴 ) , ( 𝐴 +𝑒 -𝑒 𝐵 ) ) ) |
| 10 | 1 | xrsds | ⊢ 𝐷 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ if ( 𝑥 ≤ 𝑦 , ( 𝑦 +𝑒 -𝑒 𝑥 ) , ( 𝑥 +𝑒 -𝑒 𝑦 ) ) ) |
| 11 | ovex | ⊢ ( 𝐵 +𝑒 -𝑒 𝐴 ) ∈ V | |
| 12 | ovex | ⊢ ( 𝐴 +𝑒 -𝑒 𝐵 ) ∈ V | |
| 13 | 11 12 | ifex | ⊢ if ( 𝐴 ≤ 𝐵 , ( 𝐵 +𝑒 -𝑒 𝐴 ) , ( 𝐴 +𝑒 -𝑒 𝐵 ) ) ∈ V |
| 14 | 9 10 13 | ovmpoa | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 𝐷 𝐵 ) = if ( 𝐴 ≤ 𝐵 , ( 𝐵 +𝑒 -𝑒 𝐴 ) , ( 𝐴 +𝑒 -𝑒 𝐵 ) ) ) |