This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F which gives the distance from a point to a set is a continuous function into the metric topology of the extended reals. (Contributed by Mario Carneiro, 14-Feb-2015) (Revised by Mario Carneiro, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metdscn.f | |- F = ( x e. X |-> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) ) |
|
| metdscn.j | |- J = ( MetOpen ` D ) |
||
| metdscn.c | |- C = ( dist ` RR*s ) |
||
| metdscn.k | |- K = ( MetOpen ` C ) |
||
| Assertion | metdscn | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> F e. ( J Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metdscn.f | |- F = ( x e. X |-> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) ) |
|
| 2 | metdscn.j | |- J = ( MetOpen ` D ) |
|
| 3 | metdscn.c | |- C = ( dist ` RR*s ) |
|
| 4 | metdscn.k | |- K = ( MetOpen ` C ) |
|
| 5 | 1 | metdsf | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> F : X --> ( 0 [,] +oo ) ) |
| 6 | iccssxr | |- ( 0 [,] +oo ) C_ RR* |
|
| 7 | fss | |- ( ( F : X --> ( 0 [,] +oo ) /\ ( 0 [,] +oo ) C_ RR* ) -> F : X --> RR* ) |
|
| 8 | 5 6 7 | sylancl | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> F : X --> RR* ) |
| 9 | simprr | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( z e. X /\ r e. RR+ ) ) -> r e. RR+ ) |
|
| 10 | 8 | ad2antrr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( z e. X /\ r e. RR+ ) ) /\ ( w e. X /\ ( z D w ) < r ) ) -> F : X --> RR* ) |
| 11 | simplrl | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( z e. X /\ r e. RR+ ) ) /\ ( w e. X /\ ( z D w ) < r ) ) -> z e. X ) |
|
| 12 | 10 11 | ffvelcdmd | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( z e. X /\ r e. RR+ ) ) /\ ( w e. X /\ ( z D w ) < r ) ) -> ( F ` z ) e. RR* ) |
| 13 | simprl | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( z e. X /\ r e. RR+ ) ) /\ ( w e. X /\ ( z D w ) < r ) ) -> w e. X ) |
|
| 14 | 10 13 | ffvelcdmd | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( z e. X /\ r e. RR+ ) ) /\ ( w e. X /\ ( z D w ) < r ) ) -> ( F ` w ) e. RR* ) |
| 15 | 3 | xrsdsval | |- ( ( ( F ` z ) e. RR* /\ ( F ` w ) e. RR* ) -> ( ( F ` z ) C ( F ` w ) ) = if ( ( F ` z ) <_ ( F ` w ) , ( ( F ` w ) +e -e ( F ` z ) ) , ( ( F ` z ) +e -e ( F ` w ) ) ) ) |
| 16 | 12 14 15 | syl2anc | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( z e. X /\ r e. RR+ ) ) /\ ( w e. X /\ ( z D w ) < r ) ) -> ( ( F ` z ) C ( F ` w ) ) = if ( ( F ` z ) <_ ( F ` w ) , ( ( F ` w ) +e -e ( F ` z ) ) , ( ( F ` z ) +e -e ( F ` w ) ) ) ) |
| 17 | simplll | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( z e. X /\ r e. RR+ ) ) /\ ( w e. X /\ ( z D w ) < r ) ) -> D e. ( *Met ` X ) ) |
|
| 18 | simpllr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( z e. X /\ r e. RR+ ) ) /\ ( w e. X /\ ( z D w ) < r ) ) -> S C_ X ) |
|
| 19 | simplrr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( z e. X /\ r e. RR+ ) ) /\ ( w e. X /\ ( z D w ) < r ) ) -> r e. RR+ ) |
|
| 20 | xmetsym | |- ( ( D e. ( *Met ` X ) /\ w e. X /\ z e. X ) -> ( w D z ) = ( z D w ) ) |
|
| 21 | 17 13 11 20 | syl3anc | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( z e. X /\ r e. RR+ ) ) /\ ( w e. X /\ ( z D w ) < r ) ) -> ( w D z ) = ( z D w ) ) |
| 22 | simprr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( z e. X /\ r e. RR+ ) ) /\ ( w e. X /\ ( z D w ) < r ) ) -> ( z D w ) < r ) |
|
| 23 | 21 22 | eqbrtrd | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( z e. X /\ r e. RR+ ) ) /\ ( w e. X /\ ( z D w ) < r ) ) -> ( w D z ) < r ) |
| 24 | 1 2 3 4 17 18 13 11 19 23 | metdscnlem | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( z e. X /\ r e. RR+ ) ) /\ ( w e. X /\ ( z D w ) < r ) ) -> ( ( F ` w ) +e -e ( F ` z ) ) < r ) |
| 25 | 1 2 3 4 17 18 11 13 19 22 | metdscnlem | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( z e. X /\ r e. RR+ ) ) /\ ( w e. X /\ ( z D w ) < r ) ) -> ( ( F ` z ) +e -e ( F ` w ) ) < r ) |
| 26 | breq1 | |- ( ( ( F ` w ) +e -e ( F ` z ) ) = if ( ( F ` z ) <_ ( F ` w ) , ( ( F ` w ) +e -e ( F ` z ) ) , ( ( F ` z ) +e -e ( F ` w ) ) ) -> ( ( ( F ` w ) +e -e ( F ` z ) ) < r <-> if ( ( F ` z ) <_ ( F ` w ) , ( ( F ` w ) +e -e ( F ` z ) ) , ( ( F ` z ) +e -e ( F ` w ) ) ) < r ) ) |
|
| 27 | breq1 | |- ( ( ( F ` z ) +e -e ( F ` w ) ) = if ( ( F ` z ) <_ ( F ` w ) , ( ( F ` w ) +e -e ( F ` z ) ) , ( ( F ` z ) +e -e ( F ` w ) ) ) -> ( ( ( F ` z ) +e -e ( F ` w ) ) < r <-> if ( ( F ` z ) <_ ( F ` w ) , ( ( F ` w ) +e -e ( F ` z ) ) , ( ( F ` z ) +e -e ( F ` w ) ) ) < r ) ) |
|
| 28 | 26 27 | ifboth | |- ( ( ( ( F ` w ) +e -e ( F ` z ) ) < r /\ ( ( F ` z ) +e -e ( F ` w ) ) < r ) -> if ( ( F ` z ) <_ ( F ` w ) , ( ( F ` w ) +e -e ( F ` z ) ) , ( ( F ` z ) +e -e ( F ` w ) ) ) < r ) |
| 29 | 24 25 28 | syl2anc | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( z e. X /\ r e. RR+ ) ) /\ ( w e. X /\ ( z D w ) < r ) ) -> if ( ( F ` z ) <_ ( F ` w ) , ( ( F ` w ) +e -e ( F ` z ) ) , ( ( F ` z ) +e -e ( F ` w ) ) ) < r ) |
| 30 | 16 29 | eqbrtrd | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( z e. X /\ r e. RR+ ) ) /\ ( w e. X /\ ( z D w ) < r ) ) -> ( ( F ` z ) C ( F ` w ) ) < r ) |
| 31 | 30 | expr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( z e. X /\ r e. RR+ ) ) /\ w e. X ) -> ( ( z D w ) < r -> ( ( F ` z ) C ( F ` w ) ) < r ) ) |
| 32 | 31 | ralrimiva | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( z e. X /\ r e. RR+ ) ) -> A. w e. X ( ( z D w ) < r -> ( ( F ` z ) C ( F ` w ) ) < r ) ) |
| 33 | breq2 | |- ( s = r -> ( ( z D w ) < s <-> ( z D w ) < r ) ) |
|
| 34 | 33 | rspceaimv | |- ( ( r e. RR+ /\ A. w e. X ( ( z D w ) < r -> ( ( F ` z ) C ( F ` w ) ) < r ) ) -> E. s e. RR+ A. w e. X ( ( z D w ) < s -> ( ( F ` z ) C ( F ` w ) ) < r ) ) |
| 35 | 9 32 34 | syl2anc | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( z e. X /\ r e. RR+ ) ) -> E. s e. RR+ A. w e. X ( ( z D w ) < s -> ( ( F ` z ) C ( F ` w ) ) < r ) ) |
| 36 | 35 | ralrimivva | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> A. z e. X A. r e. RR+ E. s e. RR+ A. w e. X ( ( z D w ) < s -> ( ( F ` z ) C ( F ` w ) ) < r ) ) |
| 37 | simpl | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> D e. ( *Met ` X ) ) |
|
| 38 | 3 | xrsxmet | |- C e. ( *Met ` RR* ) |
| 39 | 2 4 | metcn | |- ( ( D e. ( *Met ` X ) /\ C e. ( *Met ` RR* ) ) -> ( F e. ( J Cn K ) <-> ( F : X --> RR* /\ A. z e. X A. r e. RR+ E. s e. RR+ A. w e. X ( ( z D w ) < s -> ( ( F ` z ) C ( F ` w ) ) < r ) ) ) ) |
| 40 | 37 38 39 | sylancl | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( F e. ( J Cn K ) <-> ( F : X --> RR* /\ A. z e. X A. r e. RR+ E. s e. RR+ A. w e. X ( ( z D w ) < s -> ( ( F ` z ) C ( F ` w ) ) < r ) ) ) ) |
| 41 | 8 36 40 | mpbir2and | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> F e. ( J Cn K ) ) |