This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xmetdcn2.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| xmetdcn2.2 | ⊢ 𝐶 = ( dist ‘ ℝ*𝑠 ) | ||
| xmetdcn2.3 | ⊢ 𝐾 = ( MetOpen ‘ 𝐶 ) | ||
| metdcn.d | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | ||
| metdcn.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| metdcn.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑋 ) | ||
| metdcn.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| metdcn.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) | ||
| metdcn.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑋 ) | ||
| metdcn.4 | ⊢ ( 𝜑 → ( 𝐴 𝐷 𝑌 ) < ( 𝑅 / 2 ) ) | ||
| metdcn.5 | ⊢ ( 𝜑 → ( 𝐵 𝐷 𝑍 ) < ( 𝑅 / 2 ) ) | ||
| Assertion | metdcnlem | ⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) < 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetdcn2.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | xmetdcn2.2 | ⊢ 𝐶 = ( dist ‘ ℝ*𝑠 ) | |
| 3 | xmetdcn2.3 | ⊢ 𝐾 = ( MetOpen ‘ 𝐶 ) | |
| 4 | metdcn.d | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 5 | metdcn.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 6 | metdcn.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑋 ) | |
| 7 | metdcn.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 8 | metdcn.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) | |
| 9 | metdcn.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑋 ) | |
| 10 | metdcn.4 | ⊢ ( 𝜑 → ( 𝐴 𝐷 𝑌 ) < ( 𝑅 / 2 ) ) | |
| 11 | metdcn.5 | ⊢ ( 𝜑 → ( 𝐵 𝐷 𝑍 ) < ( 𝑅 / 2 ) ) | |
| 12 | 2 | xrsxmet | ⊢ 𝐶 ∈ ( ∞Met ‘ ℝ* ) |
| 13 | 12 | a1i | ⊢ ( 𝜑 → 𝐶 ∈ ( ∞Met ‘ ℝ* ) ) |
| 14 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ) | |
| 15 | 4 5 6 14 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ) |
| 16 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ) → ( 𝑌 𝐷 𝑍 ) ∈ ℝ* ) | |
| 17 | 4 8 9 16 | syl3anc | ⊢ ( 𝜑 → ( 𝑌 𝐷 𝑍 ) ∈ ℝ* ) |
| 18 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑌 𝐷 𝐵 ) ∈ ℝ* ) | |
| 19 | 4 8 6 18 | syl3anc | ⊢ ( 𝜑 → ( 𝑌 𝐷 𝐵 ) ∈ ℝ* ) |
| 20 | 7 | rphalfcld | ⊢ ( 𝜑 → ( 𝑅 / 2 ) ∈ ℝ+ ) |
| 21 | 20 | rpred | ⊢ ( 𝜑 → ( 𝑅 / 2 ) ∈ ℝ ) |
| 22 | xmetcl | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ ℝ* ) ∧ ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ∧ ( 𝑌 𝐷 𝐵 ) ∈ ℝ* ) → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) ∈ ℝ* ) | |
| 23 | 13 15 19 22 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) ∈ ℝ* ) |
| 24 | 20 | rpxrd | ⊢ ( 𝜑 → ( 𝑅 / 2 ) ∈ ℝ* ) |
| 25 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ) → ( 𝐴 𝐷 𝑌 ) ∈ ℝ* ) | |
| 26 | 4 5 8 25 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 𝐷 𝑌 ) ∈ ℝ* ) |
| 27 | 2 | xmetrtri2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) ≤ ( 𝐴 𝐷 𝑌 ) ) |
| 28 | 4 5 8 6 27 | syl13anc | ⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) ≤ ( 𝐴 𝐷 𝑌 ) ) |
| 29 | 23 26 24 28 10 | xrlelttrd | ⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) < ( 𝑅 / 2 ) ) |
| 30 | 23 24 29 | xrltled | ⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) ≤ ( 𝑅 / 2 ) ) |
| 31 | xmetlecl | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ ℝ* ) ∧ ( ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ∧ ( 𝑌 𝐷 𝐵 ) ∈ ℝ* ) ∧ ( ( 𝑅 / 2 ) ∈ ℝ ∧ ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) ≤ ( 𝑅 / 2 ) ) ) → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) ∈ ℝ ) | |
| 32 | 13 15 19 21 30 31 | syl122anc | ⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) ∈ ℝ ) |
| 33 | xmetcl | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ ℝ* ) ∧ ( 𝑌 𝐷 𝐵 ) ∈ ℝ* ∧ ( 𝑌 𝐷 𝑍 ) ∈ ℝ* ) → ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ∈ ℝ* ) | |
| 34 | 13 19 17 33 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ∈ ℝ* ) |
| 35 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ) → ( 𝐵 𝐷 𝑍 ) ∈ ℝ* ) | |
| 36 | 4 6 9 35 | syl3anc | ⊢ ( 𝜑 → ( 𝐵 𝐷 𝑍 ) ∈ ℝ* ) |
| 37 | xmetsym | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑌 𝐷 𝐵 ) = ( 𝐵 𝐷 𝑌 ) ) | |
| 38 | 4 8 6 37 | syl3anc | ⊢ ( 𝜑 → ( 𝑌 𝐷 𝐵 ) = ( 𝐵 𝐷 𝑌 ) ) |
| 39 | xmetsym | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ) → ( 𝑌 𝐷 𝑍 ) = ( 𝑍 𝐷 𝑌 ) ) | |
| 40 | 4 8 9 39 | syl3anc | ⊢ ( 𝜑 → ( 𝑌 𝐷 𝑍 ) = ( 𝑍 𝐷 𝑌 ) ) |
| 41 | 38 40 | oveq12d | ⊢ ( 𝜑 → ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) = ( ( 𝐵 𝐷 𝑌 ) 𝐶 ( 𝑍 𝐷 𝑌 ) ) ) |
| 42 | 2 | xmetrtri2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ) ) → ( ( 𝐵 𝐷 𝑌 ) 𝐶 ( 𝑍 𝐷 𝑌 ) ) ≤ ( 𝐵 𝐷 𝑍 ) ) |
| 43 | 4 6 9 8 42 | syl13anc | ⊢ ( 𝜑 → ( ( 𝐵 𝐷 𝑌 ) 𝐶 ( 𝑍 𝐷 𝑌 ) ) ≤ ( 𝐵 𝐷 𝑍 ) ) |
| 44 | 41 43 | eqbrtrd | ⊢ ( 𝜑 → ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ≤ ( 𝐵 𝐷 𝑍 ) ) |
| 45 | 34 36 24 44 11 | xrlelttrd | ⊢ ( 𝜑 → ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) < ( 𝑅 / 2 ) ) |
| 46 | 34 24 45 | xrltled | ⊢ ( 𝜑 → ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ≤ ( 𝑅 / 2 ) ) |
| 47 | xmetlecl | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ ℝ* ) ∧ ( ( 𝑌 𝐷 𝐵 ) ∈ ℝ* ∧ ( 𝑌 𝐷 𝑍 ) ∈ ℝ* ) ∧ ( ( 𝑅 / 2 ) ∈ ℝ ∧ ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ≤ ( 𝑅 / 2 ) ) ) → ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ∈ ℝ ) | |
| 48 | 13 19 17 21 46 47 | syl122anc | ⊢ ( 𝜑 → ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ∈ ℝ ) |
| 49 | 32 48 | readdcld | ⊢ ( 𝜑 → ( ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) + ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ) ∈ ℝ ) |
| 50 | xmettri | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ ℝ* ) ∧ ( ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ∧ ( 𝑌 𝐷 𝑍 ) ∈ ℝ* ∧ ( 𝑌 𝐷 𝐵 ) ∈ ℝ* ) ) → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ≤ ( ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) +𝑒 ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ) ) | |
| 51 | 13 15 17 19 50 | syl13anc | ⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ≤ ( ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) +𝑒 ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ) ) |
| 52 | 32 48 | rexaddd | ⊢ ( 𝜑 → ( ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) +𝑒 ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ) = ( ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) + ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ) ) |
| 53 | 51 52 | breqtrd | ⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ≤ ( ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) + ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ) ) |
| 54 | xmetlecl | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ ℝ* ) ∧ ( ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ∧ ( 𝑌 𝐷 𝑍 ) ∈ ℝ* ) ∧ ( ( ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) + ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ) ∈ ℝ ∧ ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ≤ ( ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) + ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ) ) ) → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ∈ ℝ ) | |
| 55 | 13 15 17 49 53 54 | syl122anc | ⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ∈ ℝ ) |
| 56 | 7 | rpred | ⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 57 | 32 48 56 29 45 | lt2halvesd | ⊢ ( 𝜑 → ( ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) + ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ) < 𝑅 ) |
| 58 | 55 49 56 53 57 | lelttrd | ⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) < 𝑅 ) |