This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xmetdcn2.1 | |- J = ( MetOpen ` D ) |
|
| xmetdcn2.2 | |- C = ( dist ` RR*s ) |
||
| xmetdcn2.3 | |- K = ( MetOpen ` C ) |
||
| metdcn.d | |- ( ph -> D e. ( *Met ` X ) ) |
||
| metdcn.a | |- ( ph -> A e. X ) |
||
| metdcn.b | |- ( ph -> B e. X ) |
||
| metdcn.r | |- ( ph -> R e. RR+ ) |
||
| metdcn.y | |- ( ph -> Y e. X ) |
||
| metdcn.z | |- ( ph -> Z e. X ) |
||
| metdcn.4 | |- ( ph -> ( A D Y ) < ( R / 2 ) ) |
||
| metdcn.5 | |- ( ph -> ( B D Z ) < ( R / 2 ) ) |
||
| Assertion | metdcnlem | |- ( ph -> ( ( A D B ) C ( Y D Z ) ) < R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetdcn2.1 | |- J = ( MetOpen ` D ) |
|
| 2 | xmetdcn2.2 | |- C = ( dist ` RR*s ) |
|
| 3 | xmetdcn2.3 | |- K = ( MetOpen ` C ) |
|
| 4 | metdcn.d | |- ( ph -> D e. ( *Met ` X ) ) |
|
| 5 | metdcn.a | |- ( ph -> A e. X ) |
|
| 6 | metdcn.b | |- ( ph -> B e. X ) |
|
| 7 | metdcn.r | |- ( ph -> R e. RR+ ) |
|
| 8 | metdcn.y | |- ( ph -> Y e. X ) |
|
| 9 | metdcn.z | |- ( ph -> Z e. X ) |
|
| 10 | metdcn.4 | |- ( ph -> ( A D Y ) < ( R / 2 ) ) |
|
| 11 | metdcn.5 | |- ( ph -> ( B D Z ) < ( R / 2 ) ) |
|
| 12 | 2 | xrsxmet | |- C e. ( *Met ` RR* ) |
| 13 | 12 | a1i | |- ( ph -> C e. ( *Met ` RR* ) ) |
| 14 | xmetcl | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( A D B ) e. RR* ) |
|
| 15 | 4 5 6 14 | syl3anc | |- ( ph -> ( A D B ) e. RR* ) |
| 16 | xmetcl | |- ( ( D e. ( *Met ` X ) /\ Y e. X /\ Z e. X ) -> ( Y D Z ) e. RR* ) |
|
| 17 | 4 8 9 16 | syl3anc | |- ( ph -> ( Y D Z ) e. RR* ) |
| 18 | xmetcl | |- ( ( D e. ( *Met ` X ) /\ Y e. X /\ B e. X ) -> ( Y D B ) e. RR* ) |
|
| 19 | 4 8 6 18 | syl3anc | |- ( ph -> ( Y D B ) e. RR* ) |
| 20 | 7 | rphalfcld | |- ( ph -> ( R / 2 ) e. RR+ ) |
| 21 | 20 | rpred | |- ( ph -> ( R / 2 ) e. RR ) |
| 22 | xmetcl | |- ( ( C e. ( *Met ` RR* ) /\ ( A D B ) e. RR* /\ ( Y D B ) e. RR* ) -> ( ( A D B ) C ( Y D B ) ) e. RR* ) |
|
| 23 | 13 15 19 22 | syl3anc | |- ( ph -> ( ( A D B ) C ( Y D B ) ) e. RR* ) |
| 24 | 20 | rpxrd | |- ( ph -> ( R / 2 ) e. RR* ) |
| 25 | xmetcl | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ Y e. X ) -> ( A D Y ) e. RR* ) |
|
| 26 | 4 5 8 25 | syl3anc | |- ( ph -> ( A D Y ) e. RR* ) |
| 27 | 2 | xmetrtri2 | |- ( ( D e. ( *Met ` X ) /\ ( A e. X /\ Y e. X /\ B e. X ) ) -> ( ( A D B ) C ( Y D B ) ) <_ ( A D Y ) ) |
| 28 | 4 5 8 6 27 | syl13anc | |- ( ph -> ( ( A D B ) C ( Y D B ) ) <_ ( A D Y ) ) |
| 29 | 23 26 24 28 10 | xrlelttrd | |- ( ph -> ( ( A D B ) C ( Y D B ) ) < ( R / 2 ) ) |
| 30 | 23 24 29 | xrltled | |- ( ph -> ( ( A D B ) C ( Y D B ) ) <_ ( R / 2 ) ) |
| 31 | xmetlecl | |- ( ( C e. ( *Met ` RR* ) /\ ( ( A D B ) e. RR* /\ ( Y D B ) e. RR* ) /\ ( ( R / 2 ) e. RR /\ ( ( A D B ) C ( Y D B ) ) <_ ( R / 2 ) ) ) -> ( ( A D B ) C ( Y D B ) ) e. RR ) |
|
| 32 | 13 15 19 21 30 31 | syl122anc | |- ( ph -> ( ( A D B ) C ( Y D B ) ) e. RR ) |
| 33 | xmetcl | |- ( ( C e. ( *Met ` RR* ) /\ ( Y D B ) e. RR* /\ ( Y D Z ) e. RR* ) -> ( ( Y D B ) C ( Y D Z ) ) e. RR* ) |
|
| 34 | 13 19 17 33 | syl3anc | |- ( ph -> ( ( Y D B ) C ( Y D Z ) ) e. RR* ) |
| 35 | xmetcl | |- ( ( D e. ( *Met ` X ) /\ B e. X /\ Z e. X ) -> ( B D Z ) e. RR* ) |
|
| 36 | 4 6 9 35 | syl3anc | |- ( ph -> ( B D Z ) e. RR* ) |
| 37 | xmetsym | |- ( ( D e. ( *Met ` X ) /\ Y e. X /\ B e. X ) -> ( Y D B ) = ( B D Y ) ) |
|
| 38 | 4 8 6 37 | syl3anc | |- ( ph -> ( Y D B ) = ( B D Y ) ) |
| 39 | xmetsym | |- ( ( D e. ( *Met ` X ) /\ Y e. X /\ Z e. X ) -> ( Y D Z ) = ( Z D Y ) ) |
|
| 40 | 4 8 9 39 | syl3anc | |- ( ph -> ( Y D Z ) = ( Z D Y ) ) |
| 41 | 38 40 | oveq12d | |- ( ph -> ( ( Y D B ) C ( Y D Z ) ) = ( ( B D Y ) C ( Z D Y ) ) ) |
| 42 | 2 | xmetrtri2 | |- ( ( D e. ( *Met ` X ) /\ ( B e. X /\ Z e. X /\ Y e. X ) ) -> ( ( B D Y ) C ( Z D Y ) ) <_ ( B D Z ) ) |
| 43 | 4 6 9 8 42 | syl13anc | |- ( ph -> ( ( B D Y ) C ( Z D Y ) ) <_ ( B D Z ) ) |
| 44 | 41 43 | eqbrtrd | |- ( ph -> ( ( Y D B ) C ( Y D Z ) ) <_ ( B D Z ) ) |
| 45 | 34 36 24 44 11 | xrlelttrd | |- ( ph -> ( ( Y D B ) C ( Y D Z ) ) < ( R / 2 ) ) |
| 46 | 34 24 45 | xrltled | |- ( ph -> ( ( Y D B ) C ( Y D Z ) ) <_ ( R / 2 ) ) |
| 47 | xmetlecl | |- ( ( C e. ( *Met ` RR* ) /\ ( ( Y D B ) e. RR* /\ ( Y D Z ) e. RR* ) /\ ( ( R / 2 ) e. RR /\ ( ( Y D B ) C ( Y D Z ) ) <_ ( R / 2 ) ) ) -> ( ( Y D B ) C ( Y D Z ) ) e. RR ) |
|
| 48 | 13 19 17 21 46 47 | syl122anc | |- ( ph -> ( ( Y D B ) C ( Y D Z ) ) e. RR ) |
| 49 | 32 48 | readdcld | |- ( ph -> ( ( ( A D B ) C ( Y D B ) ) + ( ( Y D B ) C ( Y D Z ) ) ) e. RR ) |
| 50 | xmettri | |- ( ( C e. ( *Met ` RR* ) /\ ( ( A D B ) e. RR* /\ ( Y D Z ) e. RR* /\ ( Y D B ) e. RR* ) ) -> ( ( A D B ) C ( Y D Z ) ) <_ ( ( ( A D B ) C ( Y D B ) ) +e ( ( Y D B ) C ( Y D Z ) ) ) ) |
|
| 51 | 13 15 17 19 50 | syl13anc | |- ( ph -> ( ( A D B ) C ( Y D Z ) ) <_ ( ( ( A D B ) C ( Y D B ) ) +e ( ( Y D B ) C ( Y D Z ) ) ) ) |
| 52 | 32 48 | rexaddd | |- ( ph -> ( ( ( A D B ) C ( Y D B ) ) +e ( ( Y D B ) C ( Y D Z ) ) ) = ( ( ( A D B ) C ( Y D B ) ) + ( ( Y D B ) C ( Y D Z ) ) ) ) |
| 53 | 51 52 | breqtrd | |- ( ph -> ( ( A D B ) C ( Y D Z ) ) <_ ( ( ( A D B ) C ( Y D B ) ) + ( ( Y D B ) C ( Y D Z ) ) ) ) |
| 54 | xmetlecl | |- ( ( C e. ( *Met ` RR* ) /\ ( ( A D B ) e. RR* /\ ( Y D Z ) e. RR* ) /\ ( ( ( ( A D B ) C ( Y D B ) ) + ( ( Y D B ) C ( Y D Z ) ) ) e. RR /\ ( ( A D B ) C ( Y D Z ) ) <_ ( ( ( A D B ) C ( Y D B ) ) + ( ( Y D B ) C ( Y D Z ) ) ) ) ) -> ( ( A D B ) C ( Y D Z ) ) e. RR ) |
|
| 55 | 13 15 17 49 53 54 | syl122anc | |- ( ph -> ( ( A D B ) C ( Y D Z ) ) e. RR ) |
| 56 | 7 | rpred | |- ( ph -> R e. RR ) |
| 57 | 32 48 56 29 45 | lt2halvesd | |- ( ph -> ( ( ( A D B ) C ( Y D B ) ) + ( ( Y D B ) C ( Y D Z ) ) ) < R ) |
| 58 | 55 49 56 53 57 | lelttrd | |- ( ph -> ( ( A D B ) C ( Y D Z ) ) < R ) |