This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say a mapping from metric C to metric D is continuous at point P . The distance arguments are swapped compared to metcnp (and Munkres' metcn ) for compatibility with df-lm . Definition 1.3-3 of Kreyszig p. 20. (Contributed by NM, 4-Jun-2007) (Revised by Mario Carneiro, 13-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metcn.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| metcn.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | ||
| Assertion | metcnp2 | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑤 𝐶 𝑃 ) < 𝑧 → ( ( 𝐹 ‘ 𝑤 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metcn.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| 2 | metcn.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | |
| 3 | 1 2 | metcnp | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |
| 4 | simpl1 | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 5 | 4 | ad2antrr | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 6 | simpl3 | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → 𝑃 ∈ 𝑋 ) | |
| 7 | 6 | ad2antrr | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → 𝑃 ∈ 𝑋 ) |
| 8 | simpr | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → 𝑤 ∈ 𝑋 ) | |
| 9 | xmetsym | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑃 𝐶 𝑤 ) = ( 𝑤 𝐶 𝑃 ) ) | |
| 10 | 5 7 8 9 | syl3anc | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑃 𝐶 𝑤 ) = ( 𝑤 𝐶 𝑃 ) ) |
| 11 | 10 | breq1d | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝑃 𝐶 𝑤 ) < 𝑧 ↔ ( 𝑤 𝐶 𝑃 ) < 𝑧 ) ) |
| 12 | simpl2 | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) | |
| 13 | 12 | ad2antrr | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) |
| 14 | simpllr | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 15 | 14 7 | ffvelcdmd | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝑌 ) |
| 16 | 14 8 | ffvelcdmd | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝑌 ) |
| 17 | xmetsym | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) ) | |
| 18 | 13 15 16 17 | syl3anc | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) ) |
| 19 | 18 | breq1d | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ↔ ( ( 𝐹 ‘ 𝑤 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑦 ) ) |
| 20 | 11 19 | imbi12d | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ↔ ( ( 𝑤 𝐶 𝑃 ) < 𝑧 → ( ( 𝐹 ‘ 𝑤 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑦 ) ) ) |
| 21 | 20 | ralbidva | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ∀ 𝑤 ∈ 𝑋 ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∀ 𝑤 ∈ 𝑋 ( ( 𝑤 𝐶 𝑃 ) < 𝑧 → ( ( 𝐹 ‘ 𝑤 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑦 ) ) ) |
| 22 | 21 | anassrs | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ) → ( ∀ 𝑤 ∈ 𝑋 ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∀ 𝑤 ∈ 𝑋 ( ( 𝑤 𝐶 𝑃 ) < 𝑧 → ( ( 𝐹 ‘ 𝑤 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑦 ) ) ) |
| 23 | 22 | rexbidva | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑤 𝐶 𝑃 ) < 𝑧 → ( ( 𝐹 ‘ 𝑤 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑦 ) ) ) |
| 24 | 23 | ralbidva | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑤 𝐶 𝑃 ) < 𝑧 → ( ( 𝐹 ‘ 𝑤 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑦 ) ) ) |
| 25 | 24 | pm5.32da | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑤 𝐶 𝑃 ) < 𝑧 → ( ( 𝐹 ‘ 𝑤 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑦 ) ) ) ) |
| 26 | 3 25 | bitrd | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑤 𝐶 𝑃 ) < 𝑧 → ( ( 𝐹 ‘ 𝑤 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑦 ) ) ) ) |