This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mdetuni . (Contributed by SO, 15-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetuni.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| mdetuni.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| mdetuni.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| mdetuni.0g | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mdetuni.1r | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| mdetuni.pg | ⊢ + = ( +g ‘ 𝑅 ) | ||
| mdetuni.tg | ⊢ · = ( .r ‘ 𝑅 ) | ||
| mdetuni.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| mdetuni.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| mdetuni.ff | ⊢ ( 𝜑 → 𝐷 : 𝐵 ⟶ 𝐾 ) | ||
| mdetuni.al | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ) | ||
| mdetuni.li | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) | ||
| mdetuni.sc | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐾 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) | ||
| mdetunilem6.ph | ⊢ ( 𝜓 → 𝜑 ) | ||
| mdetunilem6.ef | ⊢ ( 𝜓 → ( 𝐸 ∈ 𝑁 ∧ 𝐹 ∈ 𝑁 ∧ 𝐸 ≠ 𝐹 ) ) | ||
| mdetunilem6.gh | ⊢ ( ( 𝜓 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐺 ∈ 𝐾 ∧ 𝐻 ∈ 𝐾 ) ) | ||
| mdetunilem6.i | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐼 ∈ 𝐾 ) | ||
| Assertion | mdetunilem6 | ⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetuni.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | mdetuni.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 3 | mdetuni.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 4 | mdetuni.0g | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | mdetuni.1r | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 6 | mdetuni.pg | ⊢ + = ( +g ‘ 𝑅 ) | |
| 7 | mdetuni.tg | ⊢ · = ( .r ‘ 𝑅 ) | |
| 8 | mdetuni.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 9 | mdetuni.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 10 | mdetuni.ff | ⊢ ( 𝜑 → 𝐷 : 𝐵 ⟶ 𝐾 ) | |
| 11 | mdetuni.al | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ) | |
| 12 | mdetuni.li | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) | |
| 13 | mdetuni.sc | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐾 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) | |
| 14 | mdetunilem6.ph | ⊢ ( 𝜓 → 𝜑 ) | |
| 15 | mdetunilem6.ef | ⊢ ( 𝜓 → ( 𝐸 ∈ 𝑁 ∧ 𝐹 ∈ 𝑁 ∧ 𝐸 ≠ 𝐹 ) ) | |
| 16 | mdetunilem6.gh | ⊢ ( ( 𝜓 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐺 ∈ 𝐾 ∧ 𝐻 ∈ 𝐾 ) ) | |
| 17 | mdetunilem6.i | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐼 ∈ 𝐾 ) | |
| 18 | 15 | simp1d | ⊢ ( 𝜓 → 𝐸 ∈ 𝑁 ) |
| 19 | 16 | simprd | ⊢ ( ( 𝜓 ∧ 𝑏 ∈ 𝑁 ) → 𝐻 ∈ 𝐾 ) |
| 20 | 19 | 3adant2 | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐻 ∈ 𝐾 ) |
| 21 | 16 | simpld | ⊢ ( ( 𝜓 ∧ 𝑏 ∈ 𝑁 ) → 𝐺 ∈ 𝐾 ) |
| 22 | 21 | 3adant2 | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐺 ∈ 𝐾 ) |
| 23 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 24 | 14 9 23 | 3syl | ⊢ ( 𝜓 → 𝑅 ∈ Grp ) |
| 25 | 24 | adantr | ⊢ ( ( 𝜓 ∧ 𝑏 ∈ 𝑁 ) → 𝑅 ∈ Grp ) |
| 26 | 3 6 | grpcl | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐻 ∈ 𝐾 ∧ 𝐺 ∈ 𝐾 ) → ( 𝐻 + 𝐺 ) ∈ 𝐾 ) |
| 27 | 25 19 21 26 | syl3anc | ⊢ ( ( 𝜓 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐻 + 𝐺 ) ∈ 𝐾 ) |
| 28 | 27 | 3adant2 | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐻 + 𝐺 ) ∈ 𝐾 ) |
| 29 | 28 17 | ifcld | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ∈ 𝐾 ) |
| 30 | 20 22 29 | 3jca | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐻 ∈ 𝐾 ∧ 𝐺 ∈ 𝐾 ∧ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ∈ 𝐾 ) ) |
| 31 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 18 30 | mdetunilem5 | ⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) = ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) ) ) |
| 32 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 27 17 | mdetunilem2 | ⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) = 0 ) |
| 33 | 15 | simp2d | ⊢ ( 𝜓 → 𝐹 ∈ 𝑁 ) |
| 34 | 20 17 | ifcld | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ∈ 𝐾 ) |
| 35 | 20 22 34 | 3jca | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐻 ∈ 𝐾 ∧ 𝐺 ∈ 𝐾 ∧ if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ∈ 𝐾 ) ) |
| 36 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 33 35 | mdetunilem5 | ⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) = ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) ) |
| 37 | 15 | simp3d | ⊢ ( 𝜓 → 𝐸 ≠ 𝐹 ) |
| 38 | 37 | necomd | ⊢ ( 𝜓 → 𝐹 ≠ 𝐸 ) |
| 39 | 33 18 38 | 3jca | ⊢ ( 𝜓 → ( 𝐹 ∈ 𝑁 ∧ 𝐸 ∈ 𝑁 ∧ 𝐹 ≠ 𝐸 ) ) |
| 40 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 39 19 17 | mdetunilem2 | ⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) = 0 ) |
| 41 | 40 | oveq1d | ⊢ ( 𝜓 → ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) = ( 0 + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) ) |
| 42 | 37 | neneqd | ⊢ ( 𝜓 → ¬ 𝐸 = 𝐹 ) |
| 43 | eqtr2 | ⊢ ( ( 𝑎 = 𝐸 ∧ 𝑎 = 𝐹 ) → 𝐸 = 𝐹 ) | |
| 44 | 42 43 | nsyl | ⊢ ( 𝜓 → ¬ ( 𝑎 = 𝐸 ∧ 𝑎 = 𝐹 ) ) |
| 45 | 44 | 3ad2ant1 | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ¬ ( 𝑎 = 𝐸 ∧ 𝑎 = 𝐹 ) ) |
| 46 | ifcomnan | ⊢ ( ¬ ( 𝑎 = 𝐸 ∧ 𝑎 = 𝐹 ) → if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) = if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) | |
| 47 | 45 46 | syl | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) = if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) |
| 48 | 47 | mpoeq3dva | ⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) |
| 49 | 48 | fveq2d | ⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) |
| 50 | 14 10 | syl | ⊢ ( 𝜓 → 𝐷 : 𝐵 ⟶ 𝐾 ) |
| 51 | 14 8 | syl | ⊢ ( 𝜓 → 𝑁 ∈ Fin ) |
| 52 | 22 17 | ifcld | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ∈ 𝐾 ) |
| 53 | 20 52 | ifcld | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ∈ 𝐾 ) |
| 54 | 1 3 2 51 24 53 | matbas2d | ⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ∈ 𝐵 ) |
| 55 | 50 54 | ffvelcdmd | ⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ∈ 𝐾 ) |
| 56 | 49 55 | eqeltrrd | ⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ∈ 𝐾 ) |
| 57 | 3 6 4 | grplid | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ∈ 𝐾 ) → ( 0 + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) |
| 58 | 24 56 57 | syl2anc | ⊢ ( 𝜓 → ( 0 + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) |
| 59 | 36 41 58 | 3eqtrd | ⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) |
| 60 | ifcomnan | ⊢ ( ¬ ( 𝑎 = 𝐸 ∧ 𝑎 = 𝐹 ) → if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) = if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) | |
| 61 | 45 60 | syl | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) = if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) |
| 62 | 61 | mpoeq3dva | ⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) |
| 63 | 62 | fveq2d | ⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) |
| 64 | 59 63 49 | 3eqtr4d | ⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ) |
| 65 | 22 17 | ifcld | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ∈ 𝐾 ) |
| 66 | 20 22 65 | 3jca | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐻 ∈ 𝐾 ∧ 𝐺 ∈ 𝐾 ∧ if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ∈ 𝐾 ) ) |
| 67 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 33 66 | mdetunilem5 | ⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) = ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ) ) |
| 68 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 39 21 17 | mdetunilem2 | ⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) = 0 ) |
| 69 | 68 | oveq2d | ⊢ ( 𝜓 → ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ) = ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) + 0 ) ) |
| 70 | ifcomnan | ⊢ ( ¬ ( 𝑎 = 𝐸 ∧ 𝑎 = 𝐹 ) → if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) = if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) | |
| 71 | 45 70 | syl | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) = if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) |
| 72 | 71 | mpoeq3dva | ⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) |
| 73 | 72 | fveq2d | ⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ) |
| 74 | 20 17 | ifcld | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ∈ 𝐾 ) |
| 75 | 22 74 | ifcld | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ∈ 𝐾 ) |
| 76 | 1 3 2 51 24 75 | matbas2d | ⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ∈ 𝐵 ) |
| 77 | 50 76 | ffvelcdmd | ⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ∈ 𝐾 ) |
| 78 | 73 77 | eqeltrrd | ⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ∈ 𝐾 ) |
| 79 | 3 6 4 | grprid | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ∈ 𝐾 ) → ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) + 0 ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ) |
| 80 | 24 78 79 | syl2anc | ⊢ ( 𝜓 → ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) + 0 ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ) |
| 81 | 67 69 80 | 3eqtrd | ⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ) |
| 82 | ifcomnan | ⊢ ( ¬ ( 𝑎 = 𝐸 ∧ 𝑎 = 𝐹 ) → if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) = if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) | |
| 83 | 45 82 | syl | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) = if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) |
| 84 | 83 | mpoeq3dva | ⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) |
| 85 | 84 | fveq2d | ⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ) |
| 86 | 81 85 73 | 3eqtr4d | ⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ) |
| 87 | 64 86 | oveq12d | ⊢ ( 𝜓 → ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) ) = ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ) ) |
| 88 | 31 32 87 | 3eqtr3rd | ⊢ ( 𝜓 → ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ) = 0 ) |
| 89 | eqid | ⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) | |
| 90 | 3 6 4 89 | grpinvid1 | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ∈ 𝐾 ∧ ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ∈ 𝐾 ) → ( ( ( invg ‘ 𝑅 ) ‘ ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ↔ ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ) = 0 ) ) |
| 91 | 24 55 77 90 | syl3anc | ⊢ ( 𝜓 → ( ( ( invg ‘ 𝑅 ) ‘ ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ↔ ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ) = 0 ) ) |
| 92 | 88 91 | mpbird | ⊢ ( 𝜓 → ( ( invg ‘ 𝑅 ) ‘ ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ) |
| 93 | 92 | eqcomd | ⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ) ) |