This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mdetuni . (Contributed by SO, 15-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetuni.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| mdetuni.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| mdetuni.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| mdetuni.0g | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mdetuni.1r | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| mdetuni.pg | ⊢ + = ( +g ‘ 𝑅 ) | ||
| mdetuni.tg | ⊢ · = ( .r ‘ 𝑅 ) | ||
| mdetuni.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| mdetuni.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| mdetuni.ff | ⊢ ( 𝜑 → 𝐷 : 𝐵 ⟶ 𝐾 ) | ||
| mdetuni.al | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ) | ||
| mdetuni.li | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) | ||
| mdetuni.sc | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐾 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) | ||
| mdetunilem5.ph | ⊢ ( 𝜓 → 𝜑 ) | ||
| mdetunilem5.e | ⊢ ( 𝜓 → 𝐸 ∈ 𝑁 ) | ||
| mdetunilem5.fgh | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐾 ∧ 𝐻 ∈ 𝐾 ) ) | ||
| Assertion | mdetunilem5 | ⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ) = ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetuni.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | mdetuni.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 3 | mdetuni.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 4 | mdetuni.0g | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | mdetuni.1r | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 6 | mdetuni.pg | ⊢ + = ( +g ‘ 𝑅 ) | |
| 7 | mdetuni.tg | ⊢ · = ( .r ‘ 𝑅 ) | |
| 8 | mdetuni.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 9 | mdetuni.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 10 | mdetuni.ff | ⊢ ( 𝜑 → 𝐷 : 𝐵 ⟶ 𝐾 ) | |
| 11 | mdetuni.al | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ) | |
| 12 | mdetuni.li | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) | |
| 13 | mdetuni.sc | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐾 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) | |
| 14 | mdetunilem5.ph | ⊢ ( 𝜓 → 𝜑 ) | |
| 15 | mdetunilem5.e | ⊢ ( 𝜓 → 𝐸 ∈ 𝑁 ) | |
| 16 | mdetunilem5.fgh | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐾 ∧ 𝐻 ∈ 𝐾 ) ) | |
| 17 | 14 8 | syl | ⊢ ( 𝜓 → 𝑁 ∈ Fin ) |
| 18 | 14 9 | syl | ⊢ ( 𝜓 → 𝑅 ∈ Ring ) |
| 19 | 18 | 3ad2ant1 | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 20 | 16 | simp1d | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐹 ∈ 𝐾 ) |
| 21 | 16 | simp2d | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐺 ∈ 𝐾 ) |
| 22 | 3 6 | ringacl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐾 ) → ( 𝐹 + 𝐺 ) ∈ 𝐾 ) |
| 23 | 19 20 21 22 | syl3anc | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐹 + 𝐺 ) ∈ 𝐾 ) |
| 24 | 16 | simp3d | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐻 ∈ 𝐾 ) |
| 25 | 23 24 | ifcld | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ∈ 𝐾 ) |
| 26 | 1 3 2 17 18 25 | matbas2d | ⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ∈ 𝐵 ) |
| 27 | 20 24 | ifcld | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ∈ 𝐾 ) |
| 28 | 1 3 2 17 18 27 | matbas2d | ⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ∈ 𝐵 ) |
| 29 | 21 24 | ifcld | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ∈ 𝐾 ) |
| 30 | 1 3 2 17 18 29 | matbas2d | ⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ∈ 𝐵 ) |
| 31 | snex | ⊢ { 𝐸 } ∈ V | |
| 32 | 31 | a1i | ⊢ ( 𝜓 → { 𝐸 } ∈ V ) |
| 33 | 15 | snssd | ⊢ ( 𝜓 → { 𝐸 } ⊆ 𝑁 ) |
| 34 | 33 | 3ad2ant1 | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ { 𝐸 } ∧ 𝑏 ∈ 𝑁 ) → { 𝐸 } ⊆ 𝑁 ) |
| 35 | simp2 | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ { 𝐸 } ∧ 𝑏 ∈ 𝑁 ) → 𝑎 ∈ { 𝐸 } ) | |
| 36 | 34 35 | sseldd | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ { 𝐸 } ∧ 𝑏 ∈ 𝑁 ) → 𝑎 ∈ 𝑁 ) |
| 37 | 36 20 | syld3an2 | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ { 𝐸 } ∧ 𝑏 ∈ 𝑁 ) → 𝐹 ∈ 𝐾 ) |
| 38 | 36 21 | syld3an2 | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ { 𝐸 } ∧ 𝑏 ∈ 𝑁 ) → 𝐺 ∈ 𝐾 ) |
| 39 | eqidd | ⊢ ( 𝜓 → ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐹 ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐹 ) ) | |
| 40 | eqidd | ⊢ ( 𝜓 → ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐺 ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐺 ) ) | |
| 41 | 32 17 37 38 39 40 | offval22 | ⊢ ( 𝜓 → ( ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐹 ) ∘f + ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐺 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ ( 𝐹 + 𝐺 ) ) ) |
| 42 | 41 | eqcomd | ⊢ ( 𝜓 → ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ ( 𝐹 + 𝐺 ) ) = ( ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐹 ) ∘f + ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐺 ) ) ) |
| 43 | mposnif | ⊢ ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ ( 𝐹 + 𝐺 ) ) | |
| 44 | mposnif | ⊢ ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐹 ) | |
| 45 | mposnif | ⊢ ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐺 ) | |
| 46 | 44 45 | oveq12i | ⊢ ( ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ∘f + ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) = ( ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐹 ) ∘f + ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐺 ) ) |
| 47 | 42 43 46 | 3eqtr4g | ⊢ ( 𝜓 → ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) = ( ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ∘f + ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) ) |
| 48 | ssid | ⊢ 𝑁 ⊆ 𝑁 | |
| 49 | resmpo | ⊢ ( ( { 𝐸 } ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ) | |
| 50 | 33 48 49 | sylancl | ⊢ ( 𝜓 → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ) |
| 51 | resmpo | ⊢ ( ( { 𝐸 } ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ) | |
| 52 | 33 48 51 | sylancl | ⊢ ( 𝜓 → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ) |
| 53 | resmpo | ⊢ ( ( { 𝐸 } ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) | |
| 54 | 33 48 53 | sylancl | ⊢ ( 𝜓 → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) |
| 55 | 52 54 | oveq12d | ⊢ ( 𝜓 → ( ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) ∘f + ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) ) = ( ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ∘f + ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) ) |
| 56 | 47 50 55 | 3eqtr4d | ⊢ ( 𝜓 → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) = ( ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) ∘f + ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) ) ) |
| 57 | eldifsni | ⊢ ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) → 𝑎 ≠ 𝐸 ) | |
| 58 | 57 | 3ad2ant2 | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) ∧ 𝑏 ∈ 𝑁 ) → 𝑎 ≠ 𝐸 ) |
| 59 | 58 | neneqd | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) ∧ 𝑏 ∈ 𝑁 ) → ¬ 𝑎 = 𝐸 ) |
| 60 | iffalse | ⊢ ( ¬ 𝑎 = 𝐸 → if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) = 𝐻 ) | |
| 61 | iffalse | ⊢ ( ¬ 𝑎 = 𝐸 → if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) = 𝐻 ) | |
| 62 | 60 61 | eqtr4d | ⊢ ( ¬ 𝑎 = 𝐸 → if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) = if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) |
| 63 | 59 62 | syl | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) = if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) |
| 64 | 63 | mpoeq3dva | ⊢ ( 𝜓 → ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) = ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ) |
| 65 | difss | ⊢ ( 𝑁 ∖ { 𝐸 } ) ⊆ 𝑁 | |
| 66 | resmpo | ⊢ ( ( ( 𝑁 ∖ { 𝐸 } ) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ) | |
| 67 | 65 48 66 | mp2an | ⊢ ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) |
| 68 | resmpo | ⊢ ( ( ( 𝑁 ∖ { 𝐸 } ) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ) | |
| 69 | 65 48 68 | mp2an | ⊢ ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) |
| 70 | 64 67 69 | 3eqtr4g | ⊢ ( 𝜓 → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) ) |
| 71 | iffalse | ⊢ ( ¬ 𝑎 = 𝐸 → if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) = 𝐻 ) | |
| 72 | 60 71 | eqtr4d | ⊢ ( ¬ 𝑎 = 𝐸 → if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) = if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) |
| 73 | 59 72 | syl | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) = if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) |
| 74 | 73 | mpoeq3dva | ⊢ ( 𝜓 → ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) = ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) |
| 75 | resmpo | ⊢ ( ( ( 𝑁 ∖ { 𝐸 } ) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) | |
| 76 | 65 48 75 | mp2an | ⊢ ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) |
| 77 | 74 67 76 | 3eqtr4g | ⊢ ( 𝜓 → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) ) |
| 78 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | mdetunilem3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ∈ 𝐵 ∧ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ∈ 𝐵 ) ∧ ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ∈ 𝐵 ∧ 𝐸 ∈ 𝑁 ∧ ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) = ( ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) ∘f + ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) ) ) ∧ ( ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) ∧ ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) ) ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ) = ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) ) ) |
| 79 | 14 26 28 30 15 56 70 77 78 | syl332anc | ⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ) = ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) ) ) |