This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The determinant function is homogeneous for each row (matrices are given explicitly by their entries). (Contributed by SO, 16-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetrsca2.d | |- D = ( N maDet R ) |
|
| mdetrsca2.k | |- K = ( Base ` R ) |
||
| mdetrsca2.t | |- .x. = ( .r ` R ) |
||
| mdetrsca2.r | |- ( ph -> R e. CRing ) |
||
| mdetrsca2.n | |- ( ph -> N e. Fin ) |
||
| mdetrsca2.x | |- ( ( ph /\ i e. N /\ j e. N ) -> X e. K ) |
||
| mdetrsca2.y | |- ( ( ph /\ i e. N /\ j e. N ) -> Y e. K ) |
||
| mdetrsca2.f | |- ( ph -> F e. K ) |
||
| mdetrsca2.i | |- ( ph -> I e. N ) |
||
| Assertion | mdetrsca2 | |- ( ph -> ( D ` ( i e. N , j e. N |-> if ( i = I , ( F .x. X ) , Y ) ) ) = ( F .x. ( D ` ( i e. N , j e. N |-> if ( i = I , X , Y ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetrsca2.d | |- D = ( N maDet R ) |
|
| 2 | mdetrsca2.k | |- K = ( Base ` R ) |
|
| 3 | mdetrsca2.t | |- .x. = ( .r ` R ) |
|
| 4 | mdetrsca2.r | |- ( ph -> R e. CRing ) |
|
| 5 | mdetrsca2.n | |- ( ph -> N e. Fin ) |
|
| 6 | mdetrsca2.x | |- ( ( ph /\ i e. N /\ j e. N ) -> X e. K ) |
|
| 7 | mdetrsca2.y | |- ( ( ph /\ i e. N /\ j e. N ) -> Y e. K ) |
|
| 8 | mdetrsca2.f | |- ( ph -> F e. K ) |
|
| 9 | mdetrsca2.i | |- ( ph -> I e. N ) |
|
| 10 | eqid | |- ( N Mat R ) = ( N Mat R ) |
|
| 11 | eqid | |- ( Base ` ( N Mat R ) ) = ( Base ` ( N Mat R ) ) |
|
| 12 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 13 | 4 12 | syl | |- ( ph -> R e. Ring ) |
| 14 | 13 | 3ad2ant1 | |- ( ( ph /\ i e. N /\ j e. N ) -> R e. Ring ) |
| 15 | 8 | 3ad2ant1 | |- ( ( ph /\ i e. N /\ j e. N ) -> F e. K ) |
| 16 | 2 3 | ringcl | |- ( ( R e. Ring /\ F e. K /\ X e. K ) -> ( F .x. X ) e. K ) |
| 17 | 14 15 6 16 | syl3anc | |- ( ( ph /\ i e. N /\ j e. N ) -> ( F .x. X ) e. K ) |
| 18 | 17 7 | ifcld | |- ( ( ph /\ i e. N /\ j e. N ) -> if ( i = I , ( F .x. X ) , Y ) e. K ) |
| 19 | 10 2 11 5 4 18 | matbas2d | |- ( ph -> ( i e. N , j e. N |-> if ( i = I , ( F .x. X ) , Y ) ) e. ( Base ` ( N Mat R ) ) ) |
| 20 | 6 7 | ifcld | |- ( ( ph /\ i e. N /\ j e. N ) -> if ( i = I , X , Y ) e. K ) |
| 21 | 10 2 11 5 4 20 | matbas2d | |- ( ph -> ( i e. N , j e. N |-> if ( i = I , X , Y ) ) e. ( Base ` ( N Mat R ) ) ) |
| 22 | snex | |- { I } e. _V |
|
| 23 | 22 | a1i | |- ( ph -> { I } e. _V ) |
| 24 | 8 | 3ad2ant1 | |- ( ( ph /\ i e. { I } /\ j e. N ) -> F e. K ) |
| 25 | 9 | snssd | |- ( ph -> { I } C_ N ) |
| 26 | 25 | sselda | |- ( ( ph /\ i e. { I } ) -> i e. N ) |
| 27 | 26 | 3adant3 | |- ( ( ph /\ i e. { I } /\ j e. N ) -> i e. N ) |
| 28 | 27 6 | syld3an2 | |- ( ( ph /\ i e. { I } /\ j e. N ) -> X e. K ) |
| 29 | fconstmpo | |- ( ( { I } X. N ) X. { F } ) = ( i e. { I } , j e. N |-> F ) |
|
| 30 | 29 | a1i | |- ( ph -> ( ( { I } X. N ) X. { F } ) = ( i e. { I } , j e. N |-> F ) ) |
| 31 | eqidd | |- ( ph -> ( i e. { I } , j e. N |-> X ) = ( i e. { I } , j e. N |-> X ) ) |
|
| 32 | 23 5 24 28 30 31 | offval22 | |- ( ph -> ( ( ( { I } X. N ) X. { F } ) oF .x. ( i e. { I } , j e. N |-> X ) ) = ( i e. { I } , j e. N |-> ( F .x. X ) ) ) |
| 33 | mposnif | |- ( i e. { I } , j e. N |-> if ( i = I , X , Y ) ) = ( i e. { I } , j e. N |-> X ) |
|
| 34 | 33 | oveq2i | |- ( ( ( { I } X. N ) X. { F } ) oF .x. ( i e. { I } , j e. N |-> if ( i = I , X , Y ) ) ) = ( ( ( { I } X. N ) X. { F } ) oF .x. ( i e. { I } , j e. N |-> X ) ) |
| 35 | mposnif | |- ( i e. { I } , j e. N |-> if ( i = I , ( F .x. X ) , Y ) ) = ( i e. { I } , j e. N |-> ( F .x. X ) ) |
|
| 36 | 32 34 35 | 3eqtr4g | |- ( ph -> ( ( ( { I } X. N ) X. { F } ) oF .x. ( i e. { I } , j e. N |-> if ( i = I , X , Y ) ) ) = ( i e. { I } , j e. N |-> if ( i = I , ( F .x. X ) , Y ) ) ) |
| 37 | ssid | |- N C_ N |
|
| 38 | resmpo | |- ( ( { I } C_ N /\ N C_ N ) -> ( ( i e. N , j e. N |-> if ( i = I , X , Y ) ) |` ( { I } X. N ) ) = ( i e. { I } , j e. N |-> if ( i = I , X , Y ) ) ) |
|
| 39 | 25 37 38 | sylancl | |- ( ph -> ( ( i e. N , j e. N |-> if ( i = I , X , Y ) ) |` ( { I } X. N ) ) = ( i e. { I } , j e. N |-> if ( i = I , X , Y ) ) ) |
| 40 | 39 | oveq2d | |- ( ph -> ( ( ( { I } X. N ) X. { F } ) oF .x. ( ( i e. N , j e. N |-> if ( i = I , X , Y ) ) |` ( { I } X. N ) ) ) = ( ( ( { I } X. N ) X. { F } ) oF .x. ( i e. { I } , j e. N |-> if ( i = I , X , Y ) ) ) ) |
| 41 | resmpo | |- ( ( { I } C_ N /\ N C_ N ) -> ( ( i e. N , j e. N |-> if ( i = I , ( F .x. X ) , Y ) ) |` ( { I } X. N ) ) = ( i e. { I } , j e. N |-> if ( i = I , ( F .x. X ) , Y ) ) ) |
|
| 42 | 25 37 41 | sylancl | |- ( ph -> ( ( i e. N , j e. N |-> if ( i = I , ( F .x. X ) , Y ) ) |` ( { I } X. N ) ) = ( i e. { I } , j e. N |-> if ( i = I , ( F .x. X ) , Y ) ) ) |
| 43 | 36 40 42 | 3eqtr4rd | |- ( ph -> ( ( i e. N , j e. N |-> if ( i = I , ( F .x. X ) , Y ) ) |` ( { I } X. N ) ) = ( ( ( { I } X. N ) X. { F } ) oF .x. ( ( i e. N , j e. N |-> if ( i = I , X , Y ) ) |` ( { I } X. N ) ) ) ) |
| 44 | eldifsni | |- ( i e. ( N \ { I } ) -> i =/= I ) |
|
| 45 | 44 | 3ad2ant2 | |- ( ( ph /\ i e. ( N \ { I } ) /\ j e. N ) -> i =/= I ) |
| 46 | 45 | neneqd | |- ( ( ph /\ i e. ( N \ { I } ) /\ j e. N ) -> -. i = I ) |
| 47 | iffalse | |- ( -. i = I -> if ( i = I , ( F .x. X ) , Y ) = Y ) |
|
| 48 | iffalse | |- ( -. i = I -> if ( i = I , X , Y ) = Y ) |
|
| 49 | 47 48 | eqtr4d | |- ( -. i = I -> if ( i = I , ( F .x. X ) , Y ) = if ( i = I , X , Y ) ) |
| 50 | 46 49 | syl | |- ( ( ph /\ i e. ( N \ { I } ) /\ j e. N ) -> if ( i = I , ( F .x. X ) , Y ) = if ( i = I , X , Y ) ) |
| 51 | 50 | mpoeq3dva | |- ( ph -> ( i e. ( N \ { I } ) , j e. N |-> if ( i = I , ( F .x. X ) , Y ) ) = ( i e. ( N \ { I } ) , j e. N |-> if ( i = I , X , Y ) ) ) |
| 52 | difss | |- ( N \ { I } ) C_ N |
|
| 53 | resmpo | |- ( ( ( N \ { I } ) C_ N /\ N C_ N ) -> ( ( i e. N , j e. N |-> if ( i = I , ( F .x. X ) , Y ) ) |` ( ( N \ { I } ) X. N ) ) = ( i e. ( N \ { I } ) , j e. N |-> if ( i = I , ( F .x. X ) , Y ) ) ) |
|
| 54 | 52 37 53 | mp2an | |- ( ( i e. N , j e. N |-> if ( i = I , ( F .x. X ) , Y ) ) |` ( ( N \ { I } ) X. N ) ) = ( i e. ( N \ { I } ) , j e. N |-> if ( i = I , ( F .x. X ) , Y ) ) |
| 55 | resmpo | |- ( ( ( N \ { I } ) C_ N /\ N C_ N ) -> ( ( i e. N , j e. N |-> if ( i = I , X , Y ) ) |` ( ( N \ { I } ) X. N ) ) = ( i e. ( N \ { I } ) , j e. N |-> if ( i = I , X , Y ) ) ) |
|
| 56 | 52 37 55 | mp2an | |- ( ( i e. N , j e. N |-> if ( i = I , X , Y ) ) |` ( ( N \ { I } ) X. N ) ) = ( i e. ( N \ { I } ) , j e. N |-> if ( i = I , X , Y ) ) |
| 57 | 51 54 56 | 3eqtr4g | |- ( ph -> ( ( i e. N , j e. N |-> if ( i = I , ( F .x. X ) , Y ) ) |` ( ( N \ { I } ) X. N ) ) = ( ( i e. N , j e. N |-> if ( i = I , X , Y ) ) |` ( ( N \ { I } ) X. N ) ) ) |
| 58 | 1 10 11 2 3 4 19 8 21 9 43 57 | mdetrsca | |- ( ph -> ( D ` ( i e. N , j e. N |-> if ( i = I , ( F .x. X ) , Y ) ) ) = ( F .x. ( D ` ( i e. N , j e. N |-> if ( i = I , X , Y ) ) ) ) ) |