This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The determinant of a matrix with a row containing only 0's is 0. (Contributed by SO, 16-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetr0.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| mdetr0.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| mdetr0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mdetr0.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| mdetr0.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| mdetr0.x | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑋 ∈ 𝐾 ) | ||
| mdetr0.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑁 ) | ||
| Assertion | mdetr0 | ⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetr0.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| 2 | mdetr0.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 3 | mdetr0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | mdetr0.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 5 | mdetr0.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 6 | mdetr0.x | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑋 ∈ 𝐾 ) | |
| 7 | mdetr0.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑁 ) | |
| 8 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 9 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 10 | 4 9 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 11 | 2 3 | ring0cl | ⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐾 ) |
| 12 | 10 11 | syl | ⊢ ( 𝜑 → 0 ∈ 𝐾 ) |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 0 ∈ 𝐾 ) |
| 14 | 1 2 8 4 5 13 6 12 7 | mdetrsca2 | ⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 0 ( .r ‘ 𝑅 ) 0 ) , 𝑋 ) ) ) = ( 0 ( .r ‘ 𝑅 ) ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ) ) ) |
| 15 | 2 8 3 | ringlz | ⊢ ( ( 𝑅 ∈ Ring ∧ 0 ∈ 𝐾 ) → ( 0 ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 16 | 10 12 15 | syl2anc | ⊢ ( 𝜑 → ( 0 ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 17 | 16 | ifeq1d | ⊢ ( 𝜑 → if ( 𝑖 = 𝐼 , ( 0 ( .r ‘ 𝑅 ) 0 ) , 𝑋 ) = if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) |
| 18 | 17 | mpoeq3dv | ⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 0 ( .r ‘ 𝑅 ) 0 ) , 𝑋 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ) |
| 19 | 18 | fveq2d | ⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 0 ( .r ‘ 𝑅 ) 0 ) , 𝑋 ) ) ) = ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ) ) |
| 20 | eqid | ⊢ ( 𝑁 Mat 𝑅 ) = ( 𝑁 Mat 𝑅 ) | |
| 21 | eqid | ⊢ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) | |
| 22 | 1 20 21 2 | mdetf | ⊢ ( 𝑅 ∈ CRing → 𝐷 : ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ⟶ 𝐾 ) |
| 23 | 4 22 | syl | ⊢ ( 𝜑 → 𝐷 : ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ⟶ 𝐾 ) |
| 24 | 13 6 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ∈ 𝐾 ) |
| 25 | 20 2 21 5 4 24 | matbas2d | ⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
| 26 | 23 25 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ) ∈ 𝐾 ) |
| 27 | 2 8 3 | ringlz | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ) ∈ 𝐾 ) → ( 0 ( .r ‘ 𝑅 ) ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ) ) = 0 ) |
| 28 | 10 26 27 | syl2anc | ⊢ ( 𝜑 → ( 0 ( .r ‘ 𝑅 ) ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ) ) = 0 ) |
| 29 | 14 19 28 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ) = 0 ) |