This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Measurability of a piecewise function: if F is measurable on subsets B and C of its domain, and these pieces make up all of A , then F is measurable on the whole domain. Similar to mbfres2 but here the theorem is extended to complex-valued functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfres2cn.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| mbfres2cn.b | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) ∈ MblFn ) | ||
| mbfres2cn.c | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) ∈ MblFn ) | ||
| mbfres2cn.a | ⊢ ( 𝜑 → ( 𝐵 ∪ 𝐶 ) = 𝐴 ) | ||
| Assertion | mbfres2cn | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfres2cn.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 2 | mbfres2cn.b | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) ∈ MblFn ) | |
| 3 | mbfres2cn.c | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) ∈ MblFn ) | |
| 4 | mbfres2cn.a | ⊢ ( 𝜑 → ( 𝐵 ∪ 𝐶 ) = 𝐴 ) | |
| 5 | ref | ⊢ ℜ : ℂ ⟶ ℝ | |
| 6 | fco | ⊢ ( ( ℜ : ℂ ⟶ ℝ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( ℜ ∘ 𝐹 ) : 𝐴 ⟶ ℝ ) | |
| 7 | 5 1 6 | sylancr | ⊢ ( 𝜑 → ( ℜ ∘ 𝐹 ) : 𝐴 ⟶ ℝ ) |
| 8 | resco | ⊢ ( ( ℜ ∘ 𝐹 ) ↾ 𝐵 ) = ( ℜ ∘ ( 𝐹 ↾ 𝐵 ) ) | |
| 9 | fresin | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹 ↾ 𝐵 ) : ( 𝐴 ∩ 𝐵 ) ⟶ ℂ ) | |
| 10 | ismbfcn | ⊢ ( ( 𝐹 ↾ 𝐵 ) : ( 𝐴 ∩ 𝐵 ) ⟶ ℂ → ( ( 𝐹 ↾ 𝐵 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝐹 ↾ 𝐵 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝐹 ↾ 𝐵 ) ) ∈ MblFn ) ) ) | |
| 11 | 1 9 10 | 3syl | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐵 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝐹 ↾ 𝐵 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝐹 ↾ 𝐵 ) ) ∈ MblFn ) ) ) |
| 12 | 2 11 | mpbid | ⊢ ( 𝜑 → ( ( ℜ ∘ ( 𝐹 ↾ 𝐵 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝐹 ↾ 𝐵 ) ) ∈ MblFn ) ) |
| 13 | 12 | simpld | ⊢ ( 𝜑 → ( ℜ ∘ ( 𝐹 ↾ 𝐵 ) ) ∈ MblFn ) |
| 14 | 8 13 | eqeltrid | ⊢ ( 𝜑 → ( ( ℜ ∘ 𝐹 ) ↾ 𝐵 ) ∈ MblFn ) |
| 15 | resco | ⊢ ( ( ℜ ∘ 𝐹 ) ↾ 𝐶 ) = ( ℜ ∘ ( 𝐹 ↾ 𝐶 ) ) | |
| 16 | fresin | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹 ↾ 𝐶 ) : ( 𝐴 ∩ 𝐶 ) ⟶ ℂ ) | |
| 17 | ismbfcn | ⊢ ( ( 𝐹 ↾ 𝐶 ) : ( 𝐴 ∩ 𝐶 ) ⟶ ℂ → ( ( 𝐹 ↾ 𝐶 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝐹 ↾ 𝐶 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝐹 ↾ 𝐶 ) ) ∈ MblFn ) ) ) | |
| 18 | 1 16 17 | 3syl | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐶 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝐹 ↾ 𝐶 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝐹 ↾ 𝐶 ) ) ∈ MblFn ) ) ) |
| 19 | 3 18 | mpbid | ⊢ ( 𝜑 → ( ( ℜ ∘ ( 𝐹 ↾ 𝐶 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝐹 ↾ 𝐶 ) ) ∈ MblFn ) ) |
| 20 | 19 | simpld | ⊢ ( 𝜑 → ( ℜ ∘ ( 𝐹 ↾ 𝐶 ) ) ∈ MblFn ) |
| 21 | 15 20 | eqeltrid | ⊢ ( 𝜑 → ( ( ℜ ∘ 𝐹 ) ↾ 𝐶 ) ∈ MblFn ) |
| 22 | 7 14 21 4 | mbfres2 | ⊢ ( 𝜑 → ( ℜ ∘ 𝐹 ) ∈ MblFn ) |
| 23 | imf | ⊢ ℑ : ℂ ⟶ ℝ | |
| 24 | fco | ⊢ ( ( ℑ : ℂ ⟶ ℝ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( ℑ ∘ 𝐹 ) : 𝐴 ⟶ ℝ ) | |
| 25 | 23 1 24 | sylancr | ⊢ ( 𝜑 → ( ℑ ∘ 𝐹 ) : 𝐴 ⟶ ℝ ) |
| 26 | resco | ⊢ ( ( ℑ ∘ 𝐹 ) ↾ 𝐵 ) = ( ℑ ∘ ( 𝐹 ↾ 𝐵 ) ) | |
| 27 | 12 | simprd | ⊢ ( 𝜑 → ( ℑ ∘ ( 𝐹 ↾ 𝐵 ) ) ∈ MblFn ) |
| 28 | 26 27 | eqeltrid | ⊢ ( 𝜑 → ( ( ℑ ∘ 𝐹 ) ↾ 𝐵 ) ∈ MblFn ) |
| 29 | resco | ⊢ ( ( ℑ ∘ 𝐹 ) ↾ 𝐶 ) = ( ℑ ∘ ( 𝐹 ↾ 𝐶 ) ) | |
| 30 | 19 | simprd | ⊢ ( 𝜑 → ( ℑ ∘ ( 𝐹 ↾ 𝐶 ) ) ∈ MblFn ) |
| 31 | 29 30 | eqeltrid | ⊢ ( 𝜑 → ( ( ℑ ∘ 𝐹 ) ↾ 𝐶 ) ∈ MblFn ) |
| 32 | 25 28 31 4 | mbfres2 | ⊢ ( 𝜑 → ( ℑ ∘ 𝐹 ) ∈ MblFn ) |
| 33 | ismbfcn | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹 ∈ MblFn ↔ ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ) ) | |
| 34 | 1 33 | syl | ⊢ ( 𝜑 → ( 𝐹 ∈ MblFn ↔ ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ) ) |
| 35 | 22 32 34 | mpbir2and | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |