This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Measurability of a piecewise function: if F is measurable on subsets B and C of its domain, and these pieces make up all of A , then F is measurable on the whole domain. Similar to mbfres2 but here the theorem is extended to complex-valued functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfres2cn.f | |- ( ph -> F : A --> CC ) |
|
| mbfres2cn.b | |- ( ph -> ( F |` B ) e. MblFn ) |
||
| mbfres2cn.c | |- ( ph -> ( F |` C ) e. MblFn ) |
||
| mbfres2cn.a | |- ( ph -> ( B u. C ) = A ) |
||
| Assertion | mbfres2cn | |- ( ph -> F e. MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfres2cn.f | |- ( ph -> F : A --> CC ) |
|
| 2 | mbfres2cn.b | |- ( ph -> ( F |` B ) e. MblFn ) |
|
| 3 | mbfres2cn.c | |- ( ph -> ( F |` C ) e. MblFn ) |
|
| 4 | mbfres2cn.a | |- ( ph -> ( B u. C ) = A ) |
|
| 5 | ref | |- Re : CC --> RR |
|
| 6 | fco | |- ( ( Re : CC --> RR /\ F : A --> CC ) -> ( Re o. F ) : A --> RR ) |
|
| 7 | 5 1 6 | sylancr | |- ( ph -> ( Re o. F ) : A --> RR ) |
| 8 | resco | |- ( ( Re o. F ) |` B ) = ( Re o. ( F |` B ) ) |
|
| 9 | fresin | |- ( F : A --> CC -> ( F |` B ) : ( A i^i B ) --> CC ) |
|
| 10 | ismbfcn | |- ( ( F |` B ) : ( A i^i B ) --> CC -> ( ( F |` B ) e. MblFn <-> ( ( Re o. ( F |` B ) ) e. MblFn /\ ( Im o. ( F |` B ) ) e. MblFn ) ) ) |
|
| 11 | 1 9 10 | 3syl | |- ( ph -> ( ( F |` B ) e. MblFn <-> ( ( Re o. ( F |` B ) ) e. MblFn /\ ( Im o. ( F |` B ) ) e. MblFn ) ) ) |
| 12 | 2 11 | mpbid | |- ( ph -> ( ( Re o. ( F |` B ) ) e. MblFn /\ ( Im o. ( F |` B ) ) e. MblFn ) ) |
| 13 | 12 | simpld | |- ( ph -> ( Re o. ( F |` B ) ) e. MblFn ) |
| 14 | 8 13 | eqeltrid | |- ( ph -> ( ( Re o. F ) |` B ) e. MblFn ) |
| 15 | resco | |- ( ( Re o. F ) |` C ) = ( Re o. ( F |` C ) ) |
|
| 16 | fresin | |- ( F : A --> CC -> ( F |` C ) : ( A i^i C ) --> CC ) |
|
| 17 | ismbfcn | |- ( ( F |` C ) : ( A i^i C ) --> CC -> ( ( F |` C ) e. MblFn <-> ( ( Re o. ( F |` C ) ) e. MblFn /\ ( Im o. ( F |` C ) ) e. MblFn ) ) ) |
|
| 18 | 1 16 17 | 3syl | |- ( ph -> ( ( F |` C ) e. MblFn <-> ( ( Re o. ( F |` C ) ) e. MblFn /\ ( Im o. ( F |` C ) ) e. MblFn ) ) ) |
| 19 | 3 18 | mpbid | |- ( ph -> ( ( Re o. ( F |` C ) ) e. MblFn /\ ( Im o. ( F |` C ) ) e. MblFn ) ) |
| 20 | 19 | simpld | |- ( ph -> ( Re o. ( F |` C ) ) e. MblFn ) |
| 21 | 15 20 | eqeltrid | |- ( ph -> ( ( Re o. F ) |` C ) e. MblFn ) |
| 22 | 7 14 21 4 | mbfres2 | |- ( ph -> ( Re o. F ) e. MblFn ) |
| 23 | imf | |- Im : CC --> RR |
|
| 24 | fco | |- ( ( Im : CC --> RR /\ F : A --> CC ) -> ( Im o. F ) : A --> RR ) |
|
| 25 | 23 1 24 | sylancr | |- ( ph -> ( Im o. F ) : A --> RR ) |
| 26 | resco | |- ( ( Im o. F ) |` B ) = ( Im o. ( F |` B ) ) |
|
| 27 | 12 | simprd | |- ( ph -> ( Im o. ( F |` B ) ) e. MblFn ) |
| 28 | 26 27 | eqeltrid | |- ( ph -> ( ( Im o. F ) |` B ) e. MblFn ) |
| 29 | resco | |- ( ( Im o. F ) |` C ) = ( Im o. ( F |` C ) ) |
|
| 30 | 19 | simprd | |- ( ph -> ( Im o. ( F |` C ) ) e. MblFn ) |
| 31 | 29 30 | eqeltrid | |- ( ph -> ( ( Im o. F ) |` C ) e. MblFn ) |
| 32 | 25 28 31 4 | mbfres2 | |- ( ph -> ( Im o. F ) e. MblFn ) |
| 33 | ismbfcn | |- ( F : A --> CC -> ( F e. MblFn <-> ( ( Re o. F ) e. MblFn /\ ( Im o. F ) e. MblFn ) ) ) |
|
| 34 | 1 33 | syl | |- ( ph -> ( F e. MblFn <-> ( ( Re o. F ) e. MblFn /\ ( Im o. F ) e. MblFn ) ) ) |
| 35 | 22 32 34 | mpbir2and | |- ( ph -> F e. MblFn ) |