This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cauchy sequence of real numbers converges to its limit supremum. The fourth hypothesis specifies that F is a Cauchy sequence. (Contributed by NM, 4-Apr-2005) (Revised by AV, 12-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caurcvg.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| caurcvg.3 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) | ||
| caurcvg.4 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) | ||
| Assertion | caurcvg | ⊢ ( 𝜑 → 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caurcvg.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | caurcvg.3 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) | |
| 3 | caurcvg.4 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) | |
| 4 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 5 | 1 4 | eqsstri | ⊢ 𝑍 ⊆ ℤ |
| 6 | zssre | ⊢ ℤ ⊆ ℝ | |
| 7 | 5 6 | sstri | ⊢ 𝑍 ⊆ ℝ |
| 8 | 7 | a1i | ⊢ ( 𝜑 → 𝑍 ⊆ ℝ ) |
| 9 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 10 | 9 | ne0ii | ⊢ ℝ+ ≠ ∅ |
| 11 | r19.2z | ⊢ ( ( ℝ+ ≠ ∅ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) → ∃ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) | |
| 12 | 10 3 11 | sylancr | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) |
| 13 | eluzel2 | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 14 | 13 1 | eleq2s | ⊢ ( 𝑚 ∈ 𝑍 → 𝑀 ∈ ℤ ) |
| 15 | 1 | uzsup | ⊢ ( 𝑀 ∈ ℤ → sup ( 𝑍 , ℝ* , < ) = +∞ ) |
| 16 | 14 15 | syl | ⊢ ( 𝑚 ∈ 𝑍 → sup ( 𝑍 , ℝ* , < ) = +∞ ) |
| 17 | 16 | a1d | ⊢ ( 𝑚 ∈ 𝑍 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 → sup ( 𝑍 , ℝ* , < ) = +∞ ) ) |
| 18 | 17 | rexlimiv | ⊢ ( ∃ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 → sup ( 𝑍 , ℝ* , < ) = +∞ ) |
| 19 | 18 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 → sup ( 𝑍 , ℝ* , < ) = +∞ ) |
| 20 | 12 19 | syl | ⊢ ( 𝜑 → sup ( 𝑍 , ℝ* , < ) = +∞ ) |
| 21 | 5 | sseli | ⊢ ( 𝑚 ∈ 𝑍 → 𝑚 ∈ ℤ ) |
| 22 | 5 | sseli | ⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
| 23 | eluz | ⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ↔ 𝑚 ≤ 𝑘 ) ) | |
| 24 | 21 22 23 | syl2an | ⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ↔ 𝑚 ≤ 𝑘 ) ) |
| 25 | 24 | biimprd | ⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑚 ≤ 𝑘 → 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) |
| 26 | 25 | expimpd | ⊢ ( 𝑚 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ∧ 𝑚 ≤ 𝑘 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) |
| 27 | 26 | imim1d | ⊢ ( 𝑚 ∈ 𝑍 → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) → ( ( 𝑘 ∈ 𝑍 ∧ 𝑚 ≤ 𝑘 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ) ) |
| 28 | 27 | exp4a | ⊢ ( 𝑚 ∈ 𝑍 → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) → ( 𝑘 ∈ 𝑍 → ( 𝑚 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ) ) ) |
| 29 | 28 | ralimdv2 | ⊢ ( 𝑚 ∈ 𝑍 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 → ∀ 𝑘 ∈ 𝑍 ( 𝑚 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ) ) |
| 30 | 29 | reximia | ⊢ ( ∃ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 → ∃ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ 𝑍 ( 𝑚 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ) |
| 31 | 30 | ralimi | ⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ 𝑍 ( 𝑚 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ) |
| 32 | 3 31 | syl | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ 𝑍 ( 𝑚 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ) |
| 33 | 8 2 20 32 | caurcvgr | ⊢ ( 𝜑 → 𝐹 ⇝𝑟 ( lim sup ‘ 𝐹 ) ) |
| 34 | 14 | a1d | ⊢ ( 𝑚 ∈ 𝑍 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 → 𝑀 ∈ ℤ ) ) |
| 35 | 34 | rexlimiv | ⊢ ( ∃ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 → 𝑀 ∈ ℤ ) |
| 36 | 35 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 → 𝑀 ∈ ℤ ) |
| 37 | 12 36 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 38 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 39 | fss | ⊢ ( ( 𝐹 : 𝑍 ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : 𝑍 ⟶ ℂ ) | |
| 40 | 2 38 39 | sylancl | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℂ ) |
| 41 | 1 37 40 | rlimclim | ⊢ ( 𝜑 → ( 𝐹 ⇝𝑟 ( lim sup ‘ 𝐹 ) ↔ 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ) ) |
| 42 | 33 41 | mpbid | ⊢ ( 𝜑 → 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ) |