This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The pointwise limit of a sequence of measurable real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbflim.1 | |- Z = ( ZZ>= ` M ) |
|
| mbflim.2 | |- ( ph -> M e. ZZ ) |
||
| mbflim.4 | |- ( ( ph /\ x e. A ) -> ( n e. Z |-> B ) ~~> C ) |
||
| mbflim.5 | |- ( ( ph /\ n e. Z ) -> ( x e. A |-> B ) e. MblFn ) |
||
| mbflimlem.6 | |- ( ( ph /\ ( n e. Z /\ x e. A ) ) -> B e. RR ) |
||
| Assertion | mbflimlem | |- ( ph -> ( x e. A |-> C ) e. MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbflim.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | mbflim.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | mbflim.4 | |- ( ( ph /\ x e. A ) -> ( n e. Z |-> B ) ~~> C ) |
|
| 4 | mbflim.5 | |- ( ( ph /\ n e. Z ) -> ( x e. A |-> B ) e. MblFn ) |
|
| 5 | mbflimlem.6 | |- ( ( ph /\ ( n e. Z /\ x e. A ) ) -> B e. RR ) |
|
| 6 | 5 | anass1rs | |- ( ( ( ph /\ x e. A ) /\ n e. Z ) -> B e. RR ) |
| 7 | 6 | fmpttd | |- ( ( ph /\ x e. A ) -> ( n e. Z |-> B ) : Z --> RR ) |
| 8 | 2 | adantr | |- ( ( ph /\ x e. A ) -> M e. ZZ ) |
| 9 | climrel | |- Rel ~~> |
|
| 10 | 9 | releldmi | |- ( ( n e. Z |-> B ) ~~> C -> ( n e. Z |-> B ) e. dom ~~> ) |
| 11 | 3 10 | syl | |- ( ( ph /\ x e. A ) -> ( n e. Z |-> B ) e. dom ~~> ) |
| 12 | 1 | climcau | |- ( ( M e. ZZ /\ ( n e. Z |-> B ) e. dom ~~> ) -> A. y e. RR+ E. k e. Z A. j e. ( ZZ>= ` k ) ( abs ` ( ( ( n e. Z |-> B ) ` j ) - ( ( n e. Z |-> B ) ` k ) ) ) < y ) |
| 13 | 8 11 12 | syl2anc | |- ( ( ph /\ x e. A ) -> A. y e. RR+ E. k e. Z A. j e. ( ZZ>= ` k ) ( abs ` ( ( ( n e. Z |-> B ) ` j ) - ( ( n e. Z |-> B ) ` k ) ) ) < y ) |
| 14 | 1 7 13 | caurcvg | |- ( ( ph /\ x e. A ) -> ( n e. Z |-> B ) ~~> ( limsup ` ( n e. Z |-> B ) ) ) |
| 15 | climuni | |- ( ( ( n e. Z |-> B ) ~~> ( limsup ` ( n e. Z |-> B ) ) /\ ( n e. Z |-> B ) ~~> C ) -> ( limsup ` ( n e. Z |-> B ) ) = C ) |
|
| 16 | 14 3 15 | syl2anc | |- ( ( ph /\ x e. A ) -> ( limsup ` ( n e. Z |-> B ) ) = C ) |
| 17 | 16 | mpteq2dva | |- ( ph -> ( x e. A |-> ( limsup ` ( n e. Z |-> B ) ) ) = ( x e. A |-> C ) ) |
| 18 | eqid | |- ( x e. A |-> ( limsup ` ( n e. Z |-> B ) ) ) = ( x e. A |-> ( limsup ` ( n e. Z |-> B ) ) ) |
|
| 19 | eqid | |- ( m e. RR |-> sup ( ( ( ( n e. Z |-> B ) " ( m [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( m e. RR |-> sup ( ( ( ( n e. Z |-> B ) " ( m [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
|
| 20 | 7 | ffvelcdmda | |- ( ( ( ph /\ x e. A ) /\ k e. Z ) -> ( ( n e. Z |-> B ) ` k ) e. RR ) |
| 21 | 1 8 14 20 | climrecl | |- ( ( ph /\ x e. A ) -> ( limsup ` ( n e. Z |-> B ) ) e. RR ) |
| 22 | 1 18 19 2 21 4 5 | mbflimsup | |- ( ph -> ( x e. A |-> ( limsup ` ( n e. Z |-> B ) ) ) e. MblFn ) |
| 23 | 17 22 | eqeltrrd | |- ( ph -> ( x e. A |-> C ) e. MblFn ) |